37edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author hstraub and made on 2011-06-22 07:17:58 UTC.
- The original revision id was 238143999.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a [[Porcupine family|porcupine temperament]] tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth. [[toc|flat]] ---- =Subgroups= 37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13: 12\37 = 389.2 cents 30\37 = 973.0 cents 17\37 = 551.4 cents 26\37 = 843.2 cents This means 37 is quite accurate on the 2.5.7.11 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. =The Two Fifths= The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: 21\37 = 681.1 cents 22\37 = 713.5 cents 37edo thus has the distinction of being the first [[edo]] which occupies two spaces on the syntonic spectrum. 21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6 "minor third" = 10\37 = 324.3 cents "major third" = 11\37 = 356.8 cents 22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1 "minor third" = 8\37 = 259.5 cents "major third" = 14\37 = 454.1 cents 37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. =Intervals= || degrees of 37edo || cents value || || 0 || 0.00 || || 1 || 32.43 || || 2 || 64.86 || || 3 || 97.30 || || 4 || 129.73 || || 5 || 162.16 || || 6 || 194.59 || || 7 || 227.03 || || 8 || 259.46 || || 9 || 291.89 || || 10 || 324.32 || || 11 || 356.76 || || 12 || 389.19 || || 13 || 421.62 || || 14 || 454.05 || || 15 || 486.49 || || 16 || 518.92 || || 17 || 551.35 || || 18 || 583.78 || || 19 || 616.22 || || 20 || 648.65 || || 21 || 681.08 || || 22 || 713.51 || || 23 || 745.95 || || 24 || 778.38 || || 25 || 810.81 || || 26 || 843.24 || || 27 || 875.68 || || 28 || 908.11 || || 29 || 940.54 || || 30 || 972.97 || || 31 || 1005.41 || || 32 || 1037.84 || || 33 || 1070.27 || || 34 || 1102.70 || || 35 || 1135.14 || || 36 || 1167.57 || =Scales= [[roulette6]] [[roulette7]] [[roulette13]] [[roulette19]]
Original HTML content:
<html><head><title>37edo</title></head><body>37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a <a class="wiki_link" href="/Porcupine%20family">porcupine temperament</a> tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.<br /> <br /> <!-- ws:start:WikiTextTocRule:8:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#The Two Fifths">The Two Fifths</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> <!-- ws:end:WikiTextTocRule:13 --><hr /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:0 -->Subgroups</h1> 37edo offers close approximations to <a class="wiki_link" href="/OverToneSeries">harmonics</a> 5, 7, 11, and 13:<br /> <br /> 12\37 = 389.2 cents<br /> 30\37 = 973.0 cents<br /> 17\37 = 551.4 cents<br /> 26\37 = 843.2 cents<br /> <br /> This means 37 is quite accurate on the 2.5.7.11 subgroup, where it shares the same tuning as 111et. In fact, on the larger <a class="wiki_link" href="/k%2AN%20subgroups">3*37 subgroup</a> 2.27.5.7.11.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="The Two Fifths"></a><!-- ws:end:WikiTextHeadingRule:2 -->The Two Fifths</h1> The just <a class="wiki_link" href="/perfect%20fifth">perfect fifth</a> of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:<br /> <br /> 21\37 = 681.1 cents<br /> 22\37 = 713.5 cents<br /> <br /> 37edo thus has the distinction of being the first <a class="wiki_link" href="/edo">edo</a> which occupies two spaces on the syntonic spectrum.<br /> <br /> 21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6<br /> "minor third" = 10\37 = 324.3 cents<br /> "major third" = 11\37 = 356.8 cents<br /> <br /> 22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1<br /> "minor third" = 8\37 = 259.5 cents<br /> "major third" = 14\37 = 454.1 cents<br /> <br /> 37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1> <table class="wiki_table"> <tr> <td>degrees of 37edo<br /> </td> <td>cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0.00<br /> </td> </tr> <tr> <td>1<br /> </td> <td>32.43<br /> </td> </tr> <tr> <td>2<br /> </td> <td>64.86<br /> </td> </tr> <tr> <td>3<br /> </td> <td>97.30<br /> </td> </tr> <tr> <td>4<br /> </td> <td>129.73<br /> </td> </tr> <tr> <td>5<br /> </td> <td>162.16<br /> </td> </tr> <tr> <td>6<br /> </td> <td>194.59<br /> </td> </tr> <tr> <td>7<br /> </td> <td>227.03<br /> </td> </tr> <tr> <td>8<br /> </td> <td>259.46<br /> </td> </tr> <tr> <td>9<br /> </td> <td>291.89<br /> </td> </tr> <tr> <td>10<br /> </td> <td>324.32<br /> </td> </tr> <tr> <td>11<br /> </td> <td>356.76<br /> </td> </tr> <tr> <td>12<br /> </td> <td>389.19<br /> </td> </tr> <tr> <td>13<br /> </td> <td>421.62<br /> </td> </tr> <tr> <td>14<br /> </td> <td>454.05<br /> </td> </tr> <tr> <td>15<br /> </td> <td>486.49<br /> </td> </tr> <tr> <td>16<br /> </td> <td>518.92<br /> </td> </tr> <tr> <td>17<br /> </td> <td>551.35<br /> </td> </tr> <tr> <td>18<br /> </td> <td>583.78<br /> </td> </tr> <tr> <td>19<br /> </td> <td>616.22<br /> </td> </tr> <tr> <td>20<br /> </td> <td>648.65<br /> </td> </tr> <tr> <td>21<br /> </td> <td>681.08<br /> </td> </tr> <tr> <td>22<br /> </td> <td>713.51<br /> </td> </tr> <tr> <td>23<br /> </td> <td>745.95<br /> </td> </tr> <tr> <td>24<br /> </td> <td>778.38<br /> </td> </tr> <tr> <td>25<br /> </td> <td>810.81<br /> </td> </tr> <tr> <td>26<br /> </td> <td>843.24<br /> </td> </tr> <tr> <td>27<br /> </td> <td>875.68<br /> </td> </tr> <tr> <td>28<br /> </td> <td>908.11<br /> </td> </tr> <tr> <td>29<br /> </td> <td>940.54<br /> </td> </tr> <tr> <td>30<br /> </td> <td>972.97<br /> </td> </tr> <tr> <td>31<br /> </td> <td>1005.41<br /> </td> </tr> <tr> <td>32<br /> </td> <td>1037.84<br /> </td> </tr> <tr> <td>33<br /> </td> <td>1070.27<br /> </td> </tr> <tr> <td>34<br /> </td> <td>1102.70<br /> </td> </tr> <tr> <td>35<br /> </td> <td>1135.14<br /> </td> </tr> <tr> <td>36<br /> </td> <td>1167.57<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:6 -->Scales</h1> <br /> <a class="wiki_link" href="/roulette6">roulette6</a><br /> <a class="wiki_link" href="/roulette7">roulette7</a><br /> <a class="wiki_link" href="/roulette13">roulette13</a><br /> <a class="wiki_link" href="/roulette19">roulette19</a></body></html>