SandBox

From Xenharmonic Wiki
Jump to navigation Jump to search


This is the sandbox. To experiment with editing, click on the [Edit] tab.

The Electrum temperaments are a type of rank-2 temperaments proposed by Iwuqety, inspired by the idea of using the acoustic phi (golden ratio [math]\displaystyle{ φ }[/math]) and acoustic silver ratio [math]\displaystyle{ δ_s }[/math] as generators, replacing the 3/2 perfect fifth and the 2/1 octave used in common practice music. Electrum refers to naturally occurring alloy which is mainly made up of gold and silver.

Untempered scale (arranged in quasi-Pythagorean fashion)

Period = [math]\displaystyle{ δ_s }[/math]
Hyper scale, generator = [math]\displaystyle{ φ }[/math] Hypo scale, generator = [math]\displaystyle{ φ^{-1} }[/math]
In terms of metallic ratios In surd form Absolute cents In terms of metallic ratios In surd form Absolute cents
[math]\displaystyle{ 1 }[/math] 0 [math]\displaystyle{ δ_s }[/math] [math]\displaystyle{ 1 + \sqrt{2} }[/math] 1525.864
[math]\displaystyle{ φ }[/math] [math]\displaystyle{ \frac{1 + \sqrt{5}}{2} }[/math] 833.090 [math]\displaystyle{ {δ_s} {φ^{-1}} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{2})(\sqrt{5} - 1)}{2} }[/math] 692.774
[math]\displaystyle{ {δ_s^{-1}} {φ^2} }[/math] [math]\displaystyle{ \frac{(3 + \sqrt{5})(\sqrt{2} - 1)}{2} }[/math] 140.317 [math]\displaystyle{ {δ_s^{2}} {φ^{-2}} }[/math] [math]\displaystyle{ \frac{(3 + 2 \sqrt{2})(3 - \sqrt{5})}{2} }[/math] 1385.547
[math]\displaystyle{ {δ_s^{-1}} {φ^3} }[/math] [math]\displaystyle{ (2 + \sqrt{5})(\sqrt{2} - 1) }[/math] 973.407 [math]\displaystyle{ {δ_s^{2}} {φ^{-3}} }[/math] [math]\displaystyle{ \frac{(3 + 2 \sqrt{2})(3 - \sqrt{5})}{2} }[/math] 552.457
[math]\displaystyle{ {δ_s^{-2}} {φ^4} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^4 (3 - 2\sqrt{2})}{2} }[/math] 280.633 [math]\displaystyle{ {δ_s^{3}} {φ^{-4}} }[/math] [math]\displaystyle{ \frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4} }[/math] 1245.231
[math]\displaystyle{ {δ_s^{-2}} {φ^5} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^5 (3 - 2\sqrt{2})}{32} }[/math] 1113.724 [math]\displaystyle{ {δ_s^{3}} {φ^{-5}} }[/math] [math]\displaystyle{ \frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4} }[/math] 412.140
[math]\displaystyle{ {δ_s^{-3}} {φ^6} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^6 (5\sqrt{2} - 7)}{64} }[/math] 420.950 [math]\displaystyle{ {δ_s^{4}} {φ^{-6}} }[/math] [math]\displaystyle{ \frac{64(1 + \sqrt{2})^4}{(1 + \sqrt{5})^6} }[/math] 1104.914
[math]\displaystyle{ {δ_s^{-3}} {φ^7} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^7 (5 - 7\sqrt{2})}{128} }[/math] 1254.040 [math]\displaystyle{ {δ_s^{4}} {φ^{-7}} }[/math] [math]\displaystyle{ \frac{128(1 + \sqrt{2})^4}{(1 + \sqrt{5})^7} }[/math] 271.824
[math]\displaystyle{ {δ_s^{-4}} {φ^8} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^8}{256(1 + sqrt{2})^4} }[/math] 561.267 [math]\displaystyle{ {δ_s^{5}} {φ^{-8}} }[/math] [math]\displaystyle{ \frac{256(1 + \sqrt{2})^5}{(1 + \sqrt{5})^8} }[/math] 964.597
[math]\displaystyle{ {δ_s^{-4}} {φ^9} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^9}{512(1 + sqrt{2})^4} }[/math] 1394.357 [math]\displaystyle{ {δ_s^{5}} {φ^{-9}} }[/math] [math]\displaystyle{ \frac{512(1 + \sqrt{2})^5}{(1 + \sqrt{5})^9} }[/math] 131.507
[math]\displaystyle{ {δ_s^{-5}} {φ^{10}} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^10}{1024(1 + sqrt{2})^5} }[/math] 701.583 [math]\displaystyle{ {δ_s^{6}} {φ^{-10}} }[/math] [math]\displaystyle{ \frac{1024(1 + \sqrt{2})^6}{(1 + \sqrt{5})^10} }[/math] 824.281
[math]\displaystyle{ {δ_s^{-6}} {φ^{11}} }[/math] [math]\displaystyle{ \frac{(1 + \sqrt{5})^11}{2048(1 + sqrt{2})^6} }[/math] 8.809 [math]\displaystyle{ {δ_s^{6}} {φ^{-11}} }[/math] [math]\displaystyle{ \frac{1024(1 + \sqrt{2})^5}{(1 + \sqrt{5})^10} }[/math] -8.809

Tempering out the comma

As shown above, the largest comma between the hyper-scale and the hypo-scale, produced by the two generators [math]\displaystyle{ φ }[/math] and [math]\displaystyle{ δ_s }[/math], is a mere [math]\displaystyle{ {δ_s^{-6}} {φ^{11}} }[/math] ≈ 8.809¢, much smaller and more imperceptible than both the Pythagorean comma (23.460¢) and the Syntonic comma (81/80, 21.506¢). Hence, it is practically safe to temper it out:

[math]\displaystyle{ {δ_s^{-6}} {φ^{11}} → 1 }[/math]

[math]\displaystyle{ φ^{11} → δ_s^{6} }[/math]

[math]\displaystyle{ φ → {\sqrt[11]{δ_s}}^{6} }[/math] OR [math]\displaystyle{ δ_s → {\sqrt[6]{φ}}^{11} }[/math]

The solution on the left provides for an equal division of [math]\displaystyle{ δ_s }[/math] into 11 notes to approximate [math]\displaystyle{ φ }[/math] as step 6\11. Reversely, the alternative solution provides for an equal division of [math]\displaystyle{ φ }[/math] into 6 notes to approximate the period [math]\displaystyle{ δ_s }[/math] with 5 extra steps above [math]\displaystyle{ φ }[/math]. The former equal temperament puts more weight on the silver ratio while the latter preserves the golden ratio.

Considering the archaeological analogy that electrum found in modern Anatolia contains more gold (70–90%) than electrum coins made in ancient Lydia (45–55%), 6ed-[math]\displaystyle{ φ }[/math] and 11ed-[math]\displaystyle{ δ_s }[/math] may be nicknamed "Anatolian Electrum" and "Lydian Electrum" respectively. Their intervals and differences with the untempered Electrum scales are listed below.

Anatolian Electrum (6ed-[math]\displaystyle{ φ }[/math])
Step In terms of [math]\displaystyle{ φ }[/math] Absolute Cents Closest hyper-interval (¢) Closest hypo-interval (¢) Difference (¢)
1 [math]\displaystyle{ \sqrt[6]{φ} }[/math] 138.848 140.317 131.507 -1.47, +7.34
2 [math]\displaystyle{ \sqrt[3]{φ} }[/math] 277.700 280.633 271.824 -2.93, +5.88
3 [math]\displaystyle{ \sqrt{φ} }[/math] 416.545 420.950 412.140 -4.41, +4.41
4 [math]\displaystyle{ {\sqrt[3]{φ}}^2 }[/math] 555.394 561.267 552.457 -5.87, +2.94
5 [math]\displaystyle{ {\sqrt[6]{φ}}^5 }[/math] 694.242 701.583 692.774 -7.34, +1.47
6 [math]\displaystyle{ φ }[/math] 833.090 824.281 0, +8.81
...
11 [math]\displaystyle{ {\sqrt[6]{φ}}^{11} }[/math] 1527.332 - 1525.864 +1.47
Lydian Electrum (11ed-[math]\displaystyle{ δ_s }[/math])
Step In terms of [math]\displaystyle{ δ_s }[/math] Absolute Cents Closest hyper-interval (¢) Closest hypo-interval (¢) Difference (¢)
1 [math]\displaystyle{ \sqrt[11]{δ_s} }[/math] 138.715 140.317 131.507 -1.60, +7.21
2 [math]\displaystyle{ {\sqrt[11]{δ_s}}^2 }[/math] 277.425 280.633 271.824 -3.21, +5.60
3 [math]\displaystyle{ {\sqrt[11]{δ_s}}^3 }[/math] 416.145 420.950 412.140 -4.81, +4.01
4 [math]\displaystyle{ {\sqrt[11]{δ_s}}^4 }[/math] 554.860 561.267 552.457 -6.41, +2.40
5 [math]\displaystyle{ {\sqrt[11]{δ_s}}^5 }[/math] 693.575 701.583 692.774 -8.01, +0.80
6 [math]\displaystyle{ {\sqrt[11]{δ_s}}^6 }[/math] 832.289 833.090 824.281 -0.80, +8.01
7 [math]\displaystyle{ {\sqrt[11]{δ_s}}^7 }[/math] 971.004 973.407 964.597 -2.40, +6.41
8 [math]\displaystyle{ {\sqrt[11]{δ_s}}^8 }[/math] 1109.719 1113.724 1104.914 -4.01, +4.81
9 [math]\displaystyle{ {\sqrt[11]{δ_s}}^9 }[/math] 1248.434 1254.040 1245.231 -5.60, +3.21
10 [math]\displaystyle{ {\sqrt[11]{δ_s}}^{10} }[/math] 1387.149 1394.357 1385.547 -7.21, +1.60
11 [math]\displaystyle{ δ_s }[/math] 1525.864 - 1525.864 0