253edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Osmiorisbendi and made on 2012-05-20 15:30:04 UTC.
- The original revision id was 337605706.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #630080;">253 tone equal temperament</span>= **//253-EDO//** or **253-tET** divides the octave into 253 equal steps of 4.743083 Cents, each one. It approximates the fifth by **148\253**, which is 701.976285 cents, a mere **0.004487 Cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament. __**253 tone equal modes:**__ 63 32 63 63 32: [[3L 2s|Sub-Diatonic tuning]] 43 43 19 43 43 43 19: [[5L 2s|Pythagorean tuning]] 41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]] 35 35 35 35 35 35 35 8: [[7L 1s|Porcupine tuning]] 33 33 33 11 33 33 33 33 11: Hornbostel [[23edo|"Undecaplicated"]] 31 31 31 18 31 31 31 31 18: [[7L 2s|Armodue-Mávila]] 1/31-tone tuning 26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]] 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh tuning]] **PRIME FACTORIZATION:** 253 = [[11edo|11]] * [[23edo|23]]
Original HTML content:
<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080;">253 tone equal temperament</span></h1> <br /> <strong><em>253-EDO</em></strong> or <strong>253-tET</strong> divides the octave into 253 equal steps of 4.743083 Cents, each one. It approximates the fifth by <strong>148\253</strong>, which is 701.976285 cents, a mere <strong>0.004487 Cents sharp</strong>. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br /> <br /> <u><strong>253 tone equal modes:</strong></u><br /> 63 32 63 63 32: <a class="wiki_link" href="/3L%202s">Sub-Diatonic tuning</a><br /> 43 43 19 43 43 43 19: <a class="wiki_link" href="/5L%202s">Pythagorean tuning</a><br /> 41 41 24 41 41 41 24: <a class="wiki_link" href="/Meantone">Meantonic tuning</a><br /> 35 35 35 35 35 35 35 8: <a class="wiki_link" href="/7L%201s">Porcupine tuning</a><br /> 33 33 33 11 33 33 33 33 11: Hornbostel <a class="wiki_link" href="/23edo">"Undecaplicated"</a><br /> 31 31 31 18 31 31 31 31 18: <a class="wiki_link" href="/7L%202s">Armodue-Mávila</a> 1/31-tone tuning<br /> 26 26 15 26 26 26 15 26 26 26 15: <a class="wiki_link" href="/sensi11">Sensi tuning</a><br /> 20 20 20 11 20 20 20 20 11 20 20 20 20 11: <a class="wiki_link" href="/11L%203s">Ketradektriatoh tuning</a><br /> <strong>PRIME FACTORIZATION:</strong><br /> 253 = <a class="wiki_link" href="/11edo">11</a> * <a class="wiki_link" href="/23edo">23</a></body></html>