24/17

From Xenharmonic Wiki
Revision as of 15:52, 8 June 2014 by Wikispaces>spt3125 (**Imported revision 513256572 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author spt3125 and made on 2014-06-08 15:52:47 UTC.
The original revision id was 513256572.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**24/17**
|3 1 0 0 0 0 -1>
596.9996 cents
[[media type="file" key="jid_24_17_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_24_17_pluck_adu_dr220.mp3|sound sample]]

In [[17-limit]] [[Just Intonation]], 24/17 is the "first septendecimal tritone," measuring very nearly 597¢. It is the [[mediant]] between [[7_5|7/5]] and [[17_12|17/12]], the "second septendecimal tritone." The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered [[EDO]] systems, including [[12edo]]. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. [[22edo]] is another good EDO system for using the half-octave in this way.

See: [[Gallery of Just Intervals]]

Original HTML content:

<html><head><title>24_17</title></head><body><strong>24/17</strong><br />
|3 1 0 0 0 0 -1&gt;<br />
596.9996 cents<br />
<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_24_17_pluck_adu_dr220.mp3?h=20&amp;w=240&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;jid_24_17_pluck_adu_dr220.mp3&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;20&quot; width=&quot;240&quot;/&gt; --><embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_24_17_pluck_adu_dr220.mp3?file_extension=mp3&autostart=false&repeat=false&showdigits=true&showfsbutton=false&width=240&height=20"></embed><!-- ws:end:WikiTextMediaRule:0 --> <a href="http://xenharmonic.wikispaces.com/file/view/jid_24_17_pluck_adu_dr220.mp3/513250112/jid_24_17_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_24_17_pluck_adu_dr220.mp3/513250112/jid_24_17_pluck_adu_dr220.mp3');">sound sample</a><br />
<br />
In <a class="wiki_link" href="/17-limit">17-limit</a> <a class="wiki_link" href="/Just%20Intonation">Just Intonation</a>, 24/17 is the &quot;first septendecimal tritone,&quot; measuring very nearly 597¢. It is the <a class="wiki_link" href="/mediant">mediant</a> between <a class="wiki_link" href="/7_5">7/5</a> and <a class="wiki_link" href="/17_12">17/12</a>, the &quot;second septendecimal tritone.&quot; The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered <a class="wiki_link" href="/EDO">EDO</a> systems, including <a class="wiki_link" href="/12edo">12edo</a>. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. <a class="wiki_link" href="/22edo">22edo</a> is another good EDO system for using the half-octave in this way.<br />
<br />
See: <a class="wiki_link" href="/Gallery%20of%20Just%20Intervals">Gallery of Just Intervals</a></body></html>