13edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author igliashon and made on 2011-07-28 17:10:31 UTC.
- The original revision id was 243300347.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] ---- =13 tone equal temperament / 13edo= 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). || Degree || Cents ||= Approximate Ratios* || 6L1s Names || || 0 || 0 ||= 1/1 || C || || 1 || 92.3077 ||= 22/21, 55/52, 117/110, 26/25 || C#/Db || || 2 || 184.6154 ||= 10/9, 9/8, 11/10 || D || || 3 || 276.9231 ||= 13/11, 7/6 || D#/Eb || || 4 || 369.2308 ||= 5/4, 16/13, 11/9, 26/21 || E || || 5 || 461.5385 ||= 13/10, 21/16 || E#/Fb || || 6 || 553.84 ||= 11/8, 18/13 || F || || 7 || 646.15 ||= 16/11, 13/9 || F#/Gb || || 8 || 738.46 ||= 20/13, 32/21 || G || || 9 || 830.77 ||= 8/5, 13/8, 18/11, 21/13 || G#/Ab || || 10 || 923.08 ||= 22/13, 12/7 || A || || 11 || 1015.38 ||= 9/5, 16/9, 20/11 || A#/Bb || || 12 || 1107.69 ||= 21/11, 25/13, 104/55 || B/Cb || || 13 || 1200 ||= 2/1 || C/B# || *based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible. F- =Harmony in 13edo= Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et. The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad). =Scales in 13edo= Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. [[image:13edo_horograms.jpg]] [[file:13edo horograms.pdf]] ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected. =**Compositions**= [[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3|Prelude in 13ET]] by [[Aaron Andrew Hunt]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3|Two-Part Invention in 13ET]] by [[Aaron Andrew Hunt]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]] [[http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&songID=835265|Spikey Hair in 13tET]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3|play]] by [[Andrew Heathwaite]] [[@http://cityoftheasleep.bandcamp.com/track/broken-dream-jar|Broken Dream Jar]] by [[IgliashonJones|City of the Asleep]] [[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]] =Igliashon's 13-EDO diatonic approaches= From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping <1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping <2 3| (for 11 and 13). This corresponds to the 2nd horogram above. 2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of <2 1| (for 5 and 9) and <2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating the entire 2.5.9.11.13 subgroup, which it achieves in the space of 5 generators via the octave-equivalent mapping <2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it "the" tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for naming the notes of 13-EDO, leading to a lettering very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart. =Commas= 13 EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the val < 13 21 30 36 45 48 |.) ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 || ||= 2109375/2097152 ||< | -21 3 7 > ||> 10.06 ||= Semicomma ||= Fokker Comma ||= || ||= 1029/1000 ||< | -3 1 -3 3 > ||> 49.49 ||= Keega ||= ||= || ||= 525/512 ||< | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= Avicenna's Enharmonic Diesis ||= || ||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma || ||= 64827/64000 ||< | -9 3 -3 4 > ||> 22.23 ||= Squalentine ||= ||= || ||= 3125/3087 ||< | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||= ||= || ||= 3136/3125 ||< | 6 0 -5 2 > ||> 6.08 ||= Hemimean ||= ||= || ||= 121/120 ||< | -3 -1 -1 0 2 > ||> 14.37 ||= Biyatisma ||= ||= || ||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= ||
Original HTML content:
<html><head><title>13edo</title></head><body><!-- ws:start:WikiTextTocRule:12:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --><a href="#x13 tone equal temperament / 13edo">13 tone equal temperament / 13edo</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Harmony in 13edo">Harmony in 13edo</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Scales in 13edo">Scales in 13edo</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Igliashon's 13-EDO diatonic approaches">Igliashon's 13-EDO diatonic approaches</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> <!-- ws:end:WikiTextTocRule:19 --><hr /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo).<br /> <table class="wiki_table"> <tr> <td>Degree<br /> </td> <td>Cents<br /> </td> <td style="text-align: center;">Approximate Ratios*<br /> </td> <td>6L1s Names<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td style="text-align: center;">1/1<br /> </td> <td>C<br /> </td> </tr> <tr> <td>1<br /> </td> <td>92.3077<br /> </td> <td style="text-align: center;">22/21, 55/52, 117/110, 26/25<br /> </td> <td>C#/Db<br /> </td> </tr> <tr> <td>2<br /> </td> <td>184.6154<br /> </td> <td style="text-align: center;">10/9, 9/8, 11/10<br /> </td> <td>D<br /> </td> </tr> <tr> <td>3<br /> </td> <td>276.9231<br /> </td> <td style="text-align: center;">13/11, 7/6<br /> </td> <td>D#/Eb<br /> </td> </tr> <tr> <td>4<br /> </td> <td>369.2308<br /> </td> <td style="text-align: center;">5/4, 16/13, 11/9, 26/21<br /> </td> <td>E<br /> </td> </tr> <tr> <td>5<br /> </td> <td>461.5385<br /> </td> <td style="text-align: center;">13/10, 21/16<br /> </td> <td>E#/Fb<br /> </td> </tr> <tr> <td>6<br /> </td> <td>553.84<br /> </td> <td style="text-align: center;">11/8, 18/13<br /> </td> <td>F<br /> </td> </tr> <tr> <td>7<br /> </td> <td>646.15<br /> </td> <td style="text-align: center;">16/11, 13/9<br /> </td> <td>F#/Gb<br /> </td> </tr> <tr> <td>8<br /> </td> <td>738.46<br /> </td> <td style="text-align: center;">20/13, 32/21<br /> </td> <td>G<br /> </td> </tr> <tr> <td>9<br /> </td> <td>830.77<br /> </td> <td style="text-align: center;">8/5, 13/8, 18/11, 21/13<br /> </td> <td>G#/Ab<br /> </td> </tr> <tr> <td>10<br /> </td> <td>923.08<br /> </td> <td style="text-align: center;">22/13, 12/7<br /> </td> <td>A<br /> </td> </tr> <tr> <td>11<br /> </td> <td>1015.38<br /> </td> <td style="text-align: center;">9/5, 16/9, 20/11<br /> </td> <td>A#/Bb<br /> </td> </tr> <tr> <td>12<br /> </td> <td>1107.69<br /> </td> <td style="text-align: center;">21/11, 25/13, 104/55<br /> </td> <td>B/Cb<br /> </td> </tr> <tr> <td>13<br /> </td> <td>1200<br /> </td> <td style="text-align: center;">2/1<br /> </td> <td>C/B#<br /> </td> </tr> </table> *based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.<br /> <br /> F-<br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Harmony in 13edo</h1> Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the <a class="wiki_link" href="/k%2AN%20subgroups">2*13 subgroup</a> 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.<br /> <br /> The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales in 13edo</h1> Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively.<br /> <br /> <!-- ws:start:WikiTextLocalImageRule:315:<img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="" title="" /> --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:315 --><br /> <!-- ws:start:WikiTextFileRule:316:<img src="http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&w=320" class="WikiFile" id="wikitext@@file@@13edo horograms.pdf" title="File: 13edo horograms.pdf" width="320" height="52" /> --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:316 --><br /> ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> <br /> Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:6 --><strong>Compositions</strong></h1> <br /> <a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3" rel="nofollow">Prelude in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3" rel="nofollow">Two-Part Invention in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3" rel="nofollow">Triskaidekaphobia</a> by <a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow">Herman Miller</a><br /> <a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> <a class="wiki_link_ext" href="http://cityoftheasleep.bandcamp.com/track/broken-dream-jar" rel="nofollow" target="_blank">Broken Dream Jar</a> by <a class="wiki_link" href="/IgliashonJones">City of the Asleep</a><br /> <a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank">Blinding White Darkness</a> by <a class="wiki_link" href="/IgliashonJones">City of the Asleep</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc4"><a name="Igliashon's 13-EDO diatonic approaches"></a><!-- ws:end:WikiTextHeadingRule:8 -->Igliashon's 13-EDO diatonic approaches</h1> <br /> From a temperament perspective, we can probably make the best use of 13-EDO as a 2.5.9.11.13 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, and 2.11.13, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping <1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping <2 3| (for 11 and 13). This corresponds to the 2nd horogram above.<br /> <br /> 2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of <2 1| (for 5 and 9) and <2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating the entire 2.5.9.11.13 subgroup, which it achieves in the space of 5 generators via the octave-equivalent mapping <2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it "the" tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for naming the notes of 13-EDO, leading to a lettering very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart.<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h1> --><h1 id="toc5"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:10 -->Commas</h1> 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val < 13 21 30 36 45 48 |.)<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> <th>Name 3<br /> </th> </tr> <tr> <td style="text-align: center;">2109375/2097152<br /> </td> <td style="text-align: left;">| -21 3 7 ><br /> </td> <td style="text-align: right;">10.06<br /> </td> <td style="text-align: center;">Semicomma<br /> </td> <td style="text-align: center;">Fokker Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">1029/1000<br /> </td> <td style="text-align: left;">| -3 1 -3 3 ><br /> </td> <td style="text-align: right;">49.49<br /> </td> <td style="text-align: center;">Keega<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td style="text-align: left;">| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;">Avicenna's Enharmonic Diesis<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">64/63<br /> </td> <td style="text-align: left;">| 6 -2 0 -1 ><br /> </td> <td style="text-align: right;">27.26<br /> </td> <td style="text-align: center;">Septimal Comma<br /> </td> <td style="text-align: center;">Archytas' Comma<br /> </td> <td style="text-align: center;">Leipziger Komma<br /> </td> </tr> <tr> <td style="text-align: center;">64827/64000<br /> </td> <td style="text-align: left;">| -9 3 -3 4 ><br /> </td> <td style="text-align: right;">22.23<br /> </td> <td style="text-align: center;">Squalentine<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3087<br /> </td> <td style="text-align: left;">| 0 -2 5 -3 ><br /> </td> <td style="text-align: right;">21.18<br /> </td> <td style="text-align: center;">Gariboh<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3136/3125<br /> </td> <td style="text-align: left;">| 6 0 -5 2 ><br /> </td> <td style="text-align: right;">6.08<br /> </td> <td style="text-align: center;">Hemimean<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">121/120<br /> </td> <td style="text-align: left;">| -3 -1 -1 0 2 ><br /> </td> <td style="text-align: right;">14.37<br /> </td> <td style="text-align: center;">Biyatisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">441/440<br /> </td> <td style="text-align: left;">| -3 2 -1 2 -1 ><br /> </td> <td style="text-align: right;">3.93<br /> </td> <td style="text-align: center;">Werckisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> </body></html>