13edo

From Xenharmonic Wiki
Revision as of 18:45, 28 July 2011 by Wikispaces>igliashon (**Imported revision 243312155 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author igliashon and made on 2011-07-28 18:45:37 UTC.
The original revision id was 243312155.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
----

=13 tone equal temperament / 13edo= 
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents ||= Approximate Ratios* || 6L1s Names || 5L3s Names ||
|| 0 || 0 ||= 1/1 || C || C ||
|| 1 || 92.3077 ||= 22/21, 55/52, 117/110, 26/25 || C#/Db || C#/Db ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 || D || D ||
|| 3 || 276.9231 ||= 13/11, 7/6 || D#/Eb || D#/Eb ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9, 26/21 || E || E ||
|| 5 || 461.5385 ||= 13/10, 21/16 || E#/Fb || F ||
|| 6 || 553.84 ||= 11/8, 18/13 || F || F#/Gb ||
|| 7 || 646.15 ||= 16/11, 13/9 || F#/Gb || G ||
|| 8 || 738.46 ||= 20/13, 32/21 || G || G#/Hb ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11, 21/13 || G#/Ab || H ||
|| 10 || 923.08 ||= 22/13, 12/7 || A || A ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 || A#/Bb || A#/Bb ||
|| 12 || 1107.69 ||= 21/11, 25/13, 104/55 || B/Cb || B ||
|| 13 || 1200 ||= 2/1 || C/B# || C ||
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.

=Harmony in 13edo= 
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.

The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).

=Scales in 13edo= 
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively.

[[image:13edo_horograms.jpg]]
[[file:13edo horograms.pdf]]
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson

Another neat facet of 13-EDO is the fact that any 12-EDO scale can be "turned into" a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.

=**Compositions**= 

[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3|Prelude in 13ET]] by [[Aaron Andrew Hunt]]
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3|Two-Part Invention in 13ET]] by [[Aaron Andrew Hunt]]
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]]
[[http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&songID=835265|Spikey Hair in 13tET]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3|play]] by [[Andrew Heathwaite]]
[[@http://cityoftheasleep.bandcamp.com/track/broken-dream-jar|Broken Dream Jar]] by [[IgliashonJones|City of the Asleep]]
[[@http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness|Blinding White Darkness]] by [[IgliashonJones|City of the Asleep]]

=Igliashon's 13-EDO diatonic approaches= 

From a temperament perspective, we can probably make the "best" use of 13-EDO as a 2.5.9.11.13.21 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The simplest and most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, 2.11.13, and 2.9.21, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping <1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping <2 3| (for 11 and 13). This corresponds to the 2nd horogram above.

2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of <2 1| (for 5 and 9) and <2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating a full 2.5.9.11.13 pentad, which it achieves in the space of 5 generators via the octave-equivalent mapping <2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it as a tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for 13-EDO notation, leading to a notation very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart (in the 6L1s column). It can be thought of as a "circle of major 2nds" rather than a circle of 5ths.

For the 2.9.21 subgroup, we can use the 5\13 generator, the closest thing 13-EDO has to a "perfect 4th", giving an octave-equivalent mapping of <3 1| and MOS scales corresponding to the 4th horogram above. The 8-note MOS scale of 5L3s, independently discovered by Easley Blackwood Jr, Paul Rapoport, and Erv Wilson (among others), is excellent for melody, being somewhat similar to the 12-TET diatonic scale but with an extra semitone added. It is also a conceivable basis for 13-EDO notation, using a modified "circle of fifths" (8\13, the octave inversion of 5\13) including an H: B#-G#-D#-A#-F#-C#-H-E-B-G-D-A-F-C-Hb-Eb-Bb-Gb-Db-Ab, which when arranged in order of ascending pitch within the octave gives the 5L3s names in the above interval chart. This notation has the advantage of preserving some familiar features: diatonic semitones still occur between B and C and E and F, and the dyads E-B, G-D, D-A, and F-C (and associated accidentals) sound approximately like "fifths". Also, the 5L3s scale on C somewhat approximates a 12-TET C major scale (if H is omitted).

=Commas= 
13 EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the val < 13 21 30 36 45 48 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
||= 2109375/2097152 ||< | -21 3 7 > ||> 10.06 ||= Semicomma ||= Fokker Comma ||=   ||
||= 1029/1000 ||< | -3 1 -3 3 > ||> 49.49 ||= Keega ||=   ||=   ||
||= 525/512 ||< | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= Avicenna's Enharmonic Diesis ||=   ||
||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma ||
||= 64827/64000 ||< | -9 3 -3 4 > ||> 22.23 ||= Squalentine ||=   ||=   ||
||= 3125/3087 ||< | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||=   ||=   ||
||= 3136/3125 ||< | 6 0 -5 2 > ||> 6.08 ||= Hemimean ||=   ||=   ||
||= 121/120 ||< | -3 -1 -1 0 2 > ||> 14.37 ||= Biyatisma ||=   ||=   ||
||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||=   ||=   ||

Original HTML content:

<html><head><title>13edo</title></head><body><!-- ws:start:WikiTextTocRule:12:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --><a href="#x13 tone equal temperament / 13edo">13 tone equal temperament / 13edo</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Harmony in 13edo">Harmony in 13edo</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Scales in 13edo">Scales in 13edo</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Igliashon's 13-EDO diatonic approaches">Igliashon's 13-EDO diatonic approaches</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: -->
<!-- ws:end:WikiTextTocRule:19 --><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1>
 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).<br />


<table class="wiki_table">
    <tr>
        <td>Degree<br />
</td>
        <td>Cents<br />
</td>
        <td style="text-align: center;">Approximate Ratios*<br />
</td>
        <td>6L1s Names<br />
</td>
        <td>5L3s Names<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;">1/1<br />
</td>
        <td>C<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>92.3077<br />
</td>
        <td style="text-align: center;">22/21, 55/52, 117/110, 26/25<br />
</td>
        <td>C#/Db<br />
</td>
        <td>C#/Db<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>184.6154<br />
</td>
        <td style="text-align: center;">10/9, 9/8, 11/10<br />
</td>
        <td>D<br />
</td>
        <td>D<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>276.9231<br />
</td>
        <td style="text-align: center;">13/11, 7/6<br />
</td>
        <td>D#/Eb<br />
</td>
        <td>D#/Eb<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>369.2308<br />
</td>
        <td style="text-align: center;">5/4, 16/13, 11/9, 26/21<br />
</td>
        <td>E<br />
</td>
        <td>E<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>461.5385<br />
</td>
        <td style="text-align: center;">13/10, 21/16<br />
</td>
        <td>E#/Fb<br />
</td>
        <td>F<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>553.84<br />
</td>
        <td style="text-align: center;">11/8, 18/13<br />
</td>
        <td>F<br />
</td>
        <td>F#/Gb<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>646.15<br />
</td>
        <td style="text-align: center;">16/11, 13/9<br />
</td>
        <td>F#/Gb<br />
</td>
        <td>G<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>738.46<br />
</td>
        <td style="text-align: center;">20/13, 32/21<br />
</td>
        <td>G<br />
</td>
        <td>G#/Hb<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>830.77<br />
</td>
        <td style="text-align: center;">8/5, 13/8, 18/11, 21/13<br />
</td>
        <td>G#/Ab<br />
</td>
        <td>H<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>923.08<br />
</td>
        <td style="text-align: center;">22/13, 12/7<br />
</td>
        <td>A<br />
</td>
        <td>A<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>1015.38<br />
</td>
        <td style="text-align: center;">9/5, 16/9, 20/11<br />
</td>
        <td>A#/Bb<br />
</td>
        <td>A#/Bb<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>1107.69<br />
</td>
        <td style="text-align: center;">21/11, 25/13, 104/55<br />
</td>
        <td>B/Cb<br />
</td>
        <td>B<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>1200<br />
</td>
        <td style="text-align: center;">2/1<br />
</td>
        <td>C/B#<br />
</td>
        <td>C<br />
</td>
    </tr>
</table>

*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Harmony in 13edo</h1>
 Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &quot;stack of 3rds&quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the <a class="wiki_link" href="/k%2AN%20subgroups">2*13 subgroup</a> 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.<br />
<br />
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales in 13edo</h1>
 Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:345:&lt;img src=&quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:345 --><br />
<!-- ws:start:WikiTextFileRule:346:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;w=320&quot; class=&quot;WikiFile&quot; id=&quot;wikitext@@file@@13edo horograms.pdf&quot; title=&quot;File: 13edo horograms.pdf&quot; width=&quot;320&quot; height=&quot;52&quot; /&gt; --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:346 --><br />
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br />
<br />
Another neat facet of 13-EDO is the fact that any 12-EDO scale can be &quot;turned into&quot; a 13-EDO scale by either adding an extra semitone, or turning an existent semitone into a whole-tone. Because of this, melody in 13-EDO can be quite mind-bending and uncanny, and phrases that begin in a familiar way quickly lead to something totally unexpected.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:6 --><strong>Compositions</strong></h1>
 <br />
<a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br />
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3" rel="nofollow">Prelude in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br />
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3" rel="nofollow">Two-Part Invention in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br />
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3" rel="nofollow">Triskaidekaphobia</a> by <a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow">Herman Miller</a><br />
<a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
<a class="wiki_link_ext" href="http://cityoftheasleep.bandcamp.com/track/broken-dream-jar" rel="nofollow" target="_blank">Broken Dream Jar</a> by <a class="wiki_link" href="/IgliashonJones">City of the Asleep</a><br />
<a class="wiki_link_ext" href="http://www.last.fm/music/City+of+the+Asleep/Map+of+an+Internal+Landscape/Blinding+White+Darkness" rel="nofollow" target="_blank">Blinding White Darkness</a> by <a class="wiki_link" href="/IgliashonJones">City of the Asleep</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Igliashon's 13-EDO diatonic approaches"></a><!-- ws:end:WikiTextHeadingRule:8 -->Igliashon's 13-EDO diatonic approaches</h1>
 <br />
From a temperament perspective, we can probably make the &quot;best&quot; use of 13-EDO as a 2.5.9.11.13.21 subgroup, but assuming our goal is to make reasonably-tonal, triad-based music, we might prefer to think in terms of subsets of this subgroup. The simplest and most accurately-tuned subsets are 2.5.9, 2.5.11, 2.5.13, 2.11.13, and 2.9.21, and for each of these, there is a corresponding MOS generator that is maximally-efficient at producing the desired triad. For 2.5.13, the simplest generator is 4\13, with an octave-equivalent mapping &lt;1 -1| (for 5 and 13), corresponding to the 3rd horogram above. For 2.11.13, the simplest generator is 3\13, with an octave-equivalent mapping &lt;2 3| (for 11 and 13). This corresponds to the 2nd horogram above.<br />
<br />
2.5.9 and 2.5.11 are both best-served by the 2\13 generator, corresponding to the 1st horogram above, having the (octave-equivalent) mappings of &lt;2 1| (for 5 and 9) and &lt;2 3| (for 5 and 11). This generator incidentally is also the most efficient at generating a full 2.5.9.11.13 pentad, which it achieves in the space of 5 generators via the octave-equivalent mapping &lt;2 1 3 -2|. Being that this scale is the most well-supplied with the greatest number of target triads, we might want to consider it as a tonal basis for 13-EDO, analogous to the diatonic scale in 12-TET. We could, conveniently enough, use the 7-note MOS scale as a basis for 13-EDO notation, leading to a notation very much like 12-TET except for the insertion of an additional accidental between E and F, as in the above interval chart (in the 6L1s column). It can be thought of as a &quot;circle of major 2nds&quot; rather than a circle of 5ths.<br />
<br />
For the 2.9.21 subgroup, we can use the 5\13 generator, the closest thing 13-EDO has to a &quot;perfect 4th&quot;, giving an octave-equivalent mapping of &lt;3 1| and MOS scales corresponding to the 4th horogram above. The 8-note MOS scale of 5L3s, independently discovered by Easley Blackwood Jr, Paul Rapoport, and Erv Wilson (among others), is excellent for melody, being somewhat similar to the 12-TET diatonic scale but with an extra semitone added. It is also a conceivable basis for 13-EDO notation, using a modified &quot;circle of fifths&quot; (8\13, the octave inversion of 5\13) including an H: B#-G#-D#-A#-F#-C#-H-E-B-G-D-A-F-C-Hb-Eb-Bb-Gb-Db-Ab, which when arranged in order of ascending pitch within the octave gives the 5L3s names in the above interval chart. This notation has the advantage of preserving some familiar features: diatonic semitones still occur between B and C and E and F, and the dyads E-B, G-D, D-A, and F-C (and associated accidentals) sound approximately like &quot;fifths&quot;. Also, the 5L3s scale on C somewhat approximates a 12-TET C major scale (if H is omitted).<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:10 -->Commas</h1>
 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br />


<table class="wiki_table">
    <tr>
        <th>Comma<br />
</th>
        <th>Monzo<br />
</th>
        <th>Value (Cents)<br />
</th>
        <th>Name 1<br />
</th>
        <th>Name 2<br />
</th>
        <th>Name 3<br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">2109375/2097152<br />
</td>
        <td style="text-align: left;">| -21 3 7 &gt;<br />
</td>
        <td style="text-align: right;">10.06<br />
</td>
        <td style="text-align: center;">Semicomma<br />
</td>
        <td style="text-align: center;">Fokker Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">1029/1000<br />
</td>
        <td style="text-align: left;">| -3 1 -3 3 &gt;<br />
</td>
        <td style="text-align: right;">49.49<br />
</td>
        <td style="text-align: center;">Keega<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">525/512<br />
</td>
        <td style="text-align: left;">| -9 1 2 1 &gt;<br />
</td>
        <td style="text-align: right;">43.41<br />
</td>
        <td style="text-align: center;">Avicennma<br />
</td>
        <td style="text-align: center;">Avicenna's Enharmonic Diesis<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">64/63<br />
</td>
        <td style="text-align: left;">| 6 -2 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">27.26<br />
</td>
        <td style="text-align: center;">Septimal Comma<br />
</td>
        <td style="text-align: center;">Archytas' Comma<br />
</td>
        <td style="text-align: center;">Leipziger Komma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">64827/64000<br />
</td>
        <td style="text-align: left;">| -9 3 -3 4 &gt;<br />
</td>
        <td style="text-align: right;">22.23<br />
</td>
        <td style="text-align: center;">Squalentine<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3087<br />
</td>
        <td style="text-align: left;">| 0 -2 5 -3 &gt;<br />
</td>
        <td style="text-align: right;">21.18<br />
</td>
        <td style="text-align: center;">Gariboh<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3136/3125<br />
</td>
        <td style="text-align: left;">| 6 0 -5 2 &gt;<br />
</td>
        <td style="text-align: right;">6.08<br />
</td>
        <td style="text-align: center;">Hemimean<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">121/120<br />
</td>
        <td style="text-align: left;">| -3 -1 -1 0 2 &gt;<br />
</td>
        <td style="text-align: right;">14.37<br />
</td>
        <td style="text-align: center;">Biyatisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">441/440<br />
</td>
        <td style="text-align: left;">| -3 2 -1 2 -1 &gt;<br />
</td>
        <td style="text-align: right;">3.93<br />
</td>
        <td style="text-align: center;">Werckisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>