10edt

From Xenharmonic Wiki
Revision as of 13:35, 16 August 2011 by Wikispaces>Sarzadoce (**Imported revision 246268983 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Sarzadoce and made on 2011-08-16 13:35:12 UTC.
The original revision id was 246268983.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

<span style="font-size: 18px; line-height: 27px;">**10 Equal Divisions of the Tritave**</span>

|| Degrees || Cents || Approximate Ratios ||
|| 0 || 0 || <span style="color: #660000;">[[1_1|1/1]]</span> ||
|| 1 || 190.196 || [[10_9|10/9]], 28/25 ||
|| 2 || 380.391 || <span style="color: #660000;">[[5_4|5/4]]</span> ||
|| 3 || 570.587 || [[7_5|7/5]] ||
|| 4 || 760.782 || <span style="color: #660000;">[[14_9|14/9]]</span> ||
|| 5 || 950.978 || 19/11? ||
|| 6 || 1141.173 || <span style="color: #660000;">[[27_14|27/14]]</span> ||
|| 7 || 1331.369 || 15/7 ([[15_14|15/14]] plus an octave) ||
|| 8 || 1521.564 || 12/5 (<span style="color: #660000;">[[6_5|6/5]]</span> plus an octave) ||
|| 9 || 1711.760 || 27/10 ||
|| 10 || 1901.955 || 3/1 ||


10edt, like [[5edt]], has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.

Original HTML content:

<html><head><title>10edt</title></head><body><br />
<span style="font-size: 18px; line-height: 27px;"><strong>10 Equal Divisions of the Tritave</strong></span><br />
<br />


<table class="wiki_table">
    <tr>
        <td>Degrees<br />
</td>
        <td>Cents<br />
</td>
        <td>Approximate Ratios<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/1_1">1/1</a></span><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>190.196<br />
</td>
        <td><a class="wiki_link" href="/10_9">10/9</a>, 28/25<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>380.391<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/5_4">5/4</a></span><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>570.587<br />
</td>
        <td><a class="wiki_link" href="/7_5">7/5</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>760.782<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/14_9">14/9</a></span><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>950.978<br />
</td>
        <td>19/11?<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>1141.173<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/27_14">27/14</a></span><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1331.369<br />
</td>
        <td>15/7 (<a class="wiki_link" href="/15_14">15/14</a> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>1521.564<br />
</td>
        <td>12/5 (<span style="color: #660000;"><a class="wiki_link" href="/6_5">6/5</a></span> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1711.760<br />
</td>
        <td>27/10<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>1901.955<br />
</td>
        <td>3/1<br />
</td>
    </tr>
</table>

<br />
<br />
10edt, like <a class="wiki_link" href="/5edt">5edt</a>, has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of &quot;meantone&quot; temperament.</body></html>