Minkowski reduced bases for Fokker groups of certain vals
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-03-09 17:53:28 UTC.
- The original revision id was 309554940.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
For some purposes, eg [[Fokker blocks]], it is convenient to have a good basis for the wedgies of rank two temperaments supported by a given val. Below are listed some Minkowski reduced bases relative to [[generator complexity]] as a metric, with TE complexity used to break any ties. Given a val V, there is a corresponding group if bivals, Fokk(V), consisting of all W = V∧A for vals A in the group to which V belongs. Since V∧A + V∧B = V∧(A + B), Fokk(V) consists simple bivals ("blades"); meaning they each reduce to a wedgie and correspond, except for the zero element, to a temperament. Fokk(V) can be given a basis consisting of wedgies, and these wedgies can be made to be those of low complexity, which the Minkowski reduction accomplishes. =5-limit= <12 19 28|: <<1 4 4||, <<3 0 -7|| <15 24 35|: <<3 0 -7||, <<3 5 1|| <17 27 39|: <<2 1 -3||, <<1 9 12|| <17 27 40|: <<1 4 4||, <<4 -1 -11|| <19 30 44|: <<1 4 4||, <<5 1 -10|| <22 35 51|: <<3 5 1||, <<2 -4 -11|| <31 49 72|: <<1 4 4||, <<8 1 -17|| <34 54 79|: <<2 -4 -11||, <<6 5 -6|| <41 65 95|: <<5 1 -10||, <<4 9 5|| <46 73 107|: <<2 -4 -11||, <<7 9 -2|| <53 84 123|: <<6 5 -6||, <<1 -8 -15|| =7-limit= ==Temperaments== ammonite7: <<9 15 19 3 5 2|| armodue7: <<1 -3 5 -7 5 20|| augene7: <<3 0 -6 -7 -18 -14|| august7: <<3 0 6 -7 1 14|| baba7: <<2 -2 1 -8 -4 8|| beatles7: <<2 -9 -4 -19 -12 16|| beep7: <<2 3 1 0 -4 -6|| bipelog7: <<2 -6 -6 -14 -15 3|| blacksmith7: <<0 5 0 8 0 -14|| catalan7: <<6 5 -12 -6 -36 -42|| charon7: <<2 4 4 2 1 -2|| decimal7: <<4 2 2 -6 -8 -1|| dichotic7: <<2 1 -4 -3 -12 -12|| dicot7: <<2 1 3 -3 -1 4|| diminished7: <<4 4 4 -3 -5 -2|| dominant7: <<1 4 -2 4 -6 -16|| father7: <<1 -1 3 -4 2 10|| fifive7: <<10 14 14 -1 -6 -7|| flattone7: <<1 4 -9 4 -17 -32|| garibaldi7: <<1 -8 -14 -15 -25 -10|| godzilla7: <<2 8 1 8 -4 -20|| hystrix7: <<3 5 1 1 -7 -12|| immunity7: <<2 13 1 16 -4 -34|| inflated7: <<3 0 9 -7 6 21|| injera7: <<2 8 8 8 7 -4|| jamesbond7: <<0 0 7 0 11 16|| keemun7: <<6 5 3 -6 -12 -7|| lemba7: <<6 -2 -2 -17 -20 1|| magic7: <<5 1 12 -10 5 25|| meantone7: <<1 4 10 4 13 12|| mother7: <<1 -1 -2 -4 -6 -2|| mothra7: <<3 12 -1 12 -10 -36|| nautilus7: <<6 10 3 2 -12 -21|| negri7: <<4 -3 2 -14 -8 13|| orwell7: <<7 -3 8 -21 -7 27|| pajara7: <<2 -4 -4 -11 -12 2|| passion7: <<5 -4 -10 -18 -30 -12|| pelogic7: <<1 -3 -4 -7 -9 -1|| plutus7: <<1 4 5 4 5 0|| porcupine7: <<3 5 -6 1 -18 -28|| progress7: <<3 -5 -6 -15 -18 0|| progression7: <<5 3 7 -7 -3 8|| quartonic7: <<11 18 5 3 -23 -39|| rodan7: <<3 17 -1 20 -10 -50|| schism7: <<1 -8 -2 -15 -6 18|| sensi7: <<7 9 13 -2 1 5|| sharp7: <<2 1 6 -3 4 11|| sidi7: <<4 2 9 -6 3 15|| superkleismic7: <<9 10 -3 -5 -30 -35|| superpyth7: <<1 9 -2 12 -6 -30|| ternary7: <<0 0 3 0 5 7|| valentine7: <<9 5 -3 -13 -30 -21|| walid7: <<2 -2 -2 -8 -9 1|| wollemia7: <<4 9 19 5 19 19|| würschmidt7: <<8 1 18 -17 6 39|| ==Bases== <5 8 12 14|: beep7, mother7, father7 <6 10 14 17|: ternary7, charon7, baba7 <7 11 16 20|: dicot7, plutus7, hystrix7 <8 13 19 23|: father7, walid7, hystrix7 <9 14 21 25|: beep7, pelogic7, august7 <10 16 23 28|: sharp7, blacksmith7, decimal7 <12 19 28 34|: august7, dominant7, pajara7 <14 22 32 39|: jamesbond7, decimal7, godzilla7 <15 24 35 42|: blacksmith7, inflated7, keemun7 <16 25 37 45|: diminished7, armodue7, bipelog7 <17 27 39 48|: dichotic7, sidi7, schism7 <17 27 40 48|: dominant7, progression7, progress7 <19 30 44 53: godzilla7, meantone7, keemun7 <22 35 51 62|: pajara7, magic7, porcupine7 <26 41 60 73|: injera7, lemba7, flattone7 <27 43 63 76|: augene7, superpyth7, sensi7 <29 46 67 81|: negri7, nautilus7, garibaldi7 <31 49 72 87|: meantone7, mothra7, orwell7 <34 54 79 95|: keemun7, immunity7, wollemia7 <34 54 79 96|: pajara7, fifive7, würschmidt7 <37 59 86 104|: porcupine7, beatles7, ammonite7 <41 65 95 115|: magic7, garibaldi7, superkleismic7 <46 73 107 129|: sensi7, valentine7, rodan7 <49 78 114 138}: superpyth7, passion7, catalan7 <53 84 123 149|: garibaldi7, orwell7, quartonic7 =11-limit= ==Temperaments== august11: <<3 0 6 6 -7 1 -1 14 14 -4|| diminished11: <<4 4 4 0 -3 -5 -14 -2 -14 -14|| domineering11: <<1 4 -2 6 4 -6 6 -16 0 24|| godzilla11: <<2 8 1 12 8 -4 12 -20 0 30|| keemun11: <<6 5 3 -2 -6 -12 -24 -7 -22 -16|| meanenneadecal11: <<1 4 10 6 4 13 6 12 0 -18|| negri11: <<4 -3 2 5 -14 -8 -6 13 22 7|| pajaric11: <<2 -4 -4 0 -11 -12 -7 2 14 14|| ==Bases== <12 19 28 34 42|: august11, domineering11, diminished11, pajaric11 <19 30 44 53 66|: godzilla11, meanenneadecal11, negri11, keemun11
Original HTML content:
<html><head><title>Minkowski reduced bases for Fokker groups of certain vals</title></head><body>For some purposes, eg <a class="wiki_link" href="/Fokker%20blocks">Fokker blocks</a>, it is convenient to have a good basis for the wedgies of rank two temperaments supported by a given val. Below are listed some Minkowski reduced bases relative to <a class="wiki_link" href="/generator%20complexity">generator complexity</a> as a metric, with TE complexity used to break any ties.<br /> <br /> Given a val V, there is a corresponding group if bivals, Fokk(V), consisting of all W = V∧A for vals A in the group to which V belongs. Since V∧A + V∧B = V∧(A + B), Fokk(V) consists simple bivals ("blades"); meaning they each reduce to a wedgie and correspond, except for the zero element, to a temperament. Fokk(V) can be given a basis consisting of wedgies, and these wedgies can be made to be those of low complexity, which the Minkowski reduction accomplishes.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x5-limit"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit</h1> <br /> <12 19 28|: <<1 4 4||, <<3 0 -7||<br /> <15 24 35|: <<3 0 -7||, <<3 5 1||<br /> <17 27 39|: <<2 1 -3||, <<1 9 12||<br /> <17 27 40|: <<1 4 4||, <<4 -1 -11||<br /> <19 30 44|: <<1 4 4||, <<5 1 -10||<br /> <22 35 51|: <<3 5 1||, <<2 -4 -11||<br /> <31 49 72|: <<1 4 4||, <<8 1 -17||<br /> <34 54 79|: <<2 -4 -11||, <<6 5 -6||<br /> <41 65 95|: <<5 1 -10||, <<4 9 5||<br /> <46 73 107|: <<2 -4 -11||, <<7 9 -2||<br /> <53 84 123|: <<6 5 -6||, <<1 -8 -15||<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="x7-limit"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit</h1> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x7-limit-Temperaments"></a><!-- ws:end:WikiTextHeadingRule:4 -->Temperaments</h2> <br /> ammonite7: <<9 15 19 3 5 2||<br /> armodue7: <<1 -3 5 -7 5 20||<br /> augene7: <<3 0 -6 -7 -18 -14||<br /> august7: <<3 0 6 -7 1 14||<br /> baba7: <<2 -2 1 -8 -4 8||<br /> beatles7: <<2 -9 -4 -19 -12 16||<br /> beep7: <<2 3 1 0 -4 -6||<br /> bipelog7: <<2 -6 -6 -14 -15 3||<br /> blacksmith7: <<0 5 0 8 0 -14||<br /> catalan7: <<6 5 -12 -6 -36 -42||<br /> charon7: <<2 4 4 2 1 -2||<br /> decimal7: <<4 2 2 -6 -8 -1||<br /> dichotic7: <<2 1 -4 -3 -12 -12||<br /> dicot7: <<2 1 3 -3 -1 4||<br /> diminished7: <<4 4 4 -3 -5 -2||<br /> dominant7: <<1 4 -2 4 -6 -16||<br /> father7: <<1 -1 3 -4 2 10||<br /> fifive7: <<10 14 14 -1 -6 -7||<br /> flattone7: <<1 4 -9 4 -17 -32||<br /> garibaldi7: <<1 -8 -14 -15 -25 -10||<br /> godzilla7: <<2 8 1 8 -4 -20||<br /> hystrix7: <<3 5 1 1 -7 -12||<br /> immunity7: <<2 13 1 16 -4 -34||<br /> inflated7: <<3 0 9 -7 6 21||<br /> injera7: <<2 8 8 8 7 -4||<br /> jamesbond7: <<0 0 7 0 11 16||<br /> keemun7: <<6 5 3 -6 -12 -7||<br /> lemba7: <<6 -2 -2 -17 -20 1||<br /> magic7: <<5 1 12 -10 5 25||<br /> meantone7: <<1 4 10 4 13 12||<br /> mother7: <<1 -1 -2 -4 -6 -2||<br /> mothra7: <<3 12 -1 12 -10 -36||<br /> nautilus7: <<6 10 3 2 -12 -21||<br /> negri7: <<4 -3 2 -14 -8 13||<br /> orwell7: <<7 -3 8 -21 -7 27||<br /> pajara7: <<2 -4 -4 -11 -12 2||<br /> passion7: <<5 -4 -10 -18 -30 -12||<br /> pelogic7: <<1 -3 -4 -7 -9 -1||<br /> plutus7: <<1 4 5 4 5 0||<br /> porcupine7: <<3 5 -6 1 -18 -28||<br /> progress7: <<3 -5 -6 -15 -18 0||<br /> progression7: <<5 3 7 -7 -3 8||<br /> quartonic7: <<11 18 5 3 -23 -39||<br /> rodan7: <<3 17 -1 20 -10 -50||<br /> schism7: <<1 -8 -2 -15 -6 18||<br /> sensi7: <<7 9 13 -2 1 5||<br /> sharp7: <<2 1 6 -3 4 11||<br /> sidi7: <<4 2 9 -6 3 15||<br /> superkleismic7: <<9 10 -3 -5 -30 -35||<br /> superpyth7: <<1 9 -2 12 -6 -30||<br /> ternary7: <<0 0 3 0 5 7||<br /> valentine7: <<9 5 -3 -13 -30 -21||<br /> walid7: <<2 -2 -2 -8 -9 1||<br /> wollemia7: <<4 9 19 5 19 19||<br /> würschmidt7: <<8 1 18 -17 6 39||<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x7-limit-Bases"></a><!-- ws:end:WikiTextHeadingRule:6 -->Bases</h2> <br /> <5 8 12 14|: beep7, mother7, father7<br /> <6 10 14 17|: ternary7, charon7, baba7<br /> <7 11 16 20|: dicot7, plutus7, hystrix7<br /> <8 13 19 23|: father7, walid7, hystrix7<br /> <9 14 21 25|: beep7, pelogic7, august7<br /> <10 16 23 28|: sharp7, blacksmith7, decimal7<br /> <12 19 28 34|: august7, dominant7, pajara7<br /> <14 22 32 39|: jamesbond7, decimal7, godzilla7<br /> <15 24 35 42|: blacksmith7, inflated7, keemun7<br /> <16 25 37 45|: diminished7, armodue7, bipelog7<br /> <17 27 39 48|: dichotic7, sidi7, schism7<br /> <17 27 40 48|: dominant7, progression7, progress7<br /> <19 30 44 53: godzilla7, meantone7, keemun7<br /> <22 35 51 62|: pajara7, magic7, porcupine7<br /> <26 41 60 73|: injera7, lemba7, flattone7<br /> <27 43 63 76|: augene7, superpyth7, sensi7<br /> <29 46 67 81|: negri7, nautilus7, garibaldi7<br /> <31 49 72 87|: meantone7, mothra7, orwell7<br /> <34 54 79 95|: keemun7, immunity7, wollemia7<br /> <34 54 79 96|: pajara7, fifive7, würschmidt7<br /> <37 59 86 104|: porcupine7, beatles7, ammonite7<br /> <41 65 95 115|: magic7, garibaldi7, superkleismic7<br /> <46 73 107 129|: sensi7, valentine7, rodan7<br /> <49 78 114 138}: superpyth7, passion7, catalan7<br /> <53 84 123 149|: garibaldi7, orwell7, quartonic7<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc4"><a name="x11-limit"></a><!-- ws:end:WikiTextHeadingRule:8 -->11-limit</h1> <!-- ws:start:WikiTextHeadingRule:10:<h2> --><h2 id="toc5"><a name="x11-limit-Temperaments"></a><!-- ws:end:WikiTextHeadingRule:10 -->Temperaments</h2> <br /> august11: <<3 0 6 6 -7 1 -1 14 14 -4||<br /> diminished11: <<4 4 4 0 -3 -5 -14 -2 -14 -14||<br /> domineering11: <<1 4 -2 6 4 -6 6 -16 0 24||<br /> godzilla11: <<2 8 1 12 8 -4 12 -20 0 30||<br /> keemun11: <<6 5 3 -2 -6 -12 -24 -7 -22 -16||<br /> meanenneadecal11: <<1 4 10 6 4 13 6 12 0 -18||<br /> negri11: <<4 -3 2 5 -14 -8 -6 13 22 7||<br /> pajaric11: <<2 -4 -4 0 -11 -12 -7 2 14 14||<br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><a name="x11-limit-Bases"></a><!-- ws:end:WikiTextHeadingRule:12 -->Bases</h2> <br /> <12 19 28 34 42|: august11, domineering11, diminished11, pajaric11<br /> <19 30 44 53 66|: godzilla11, meanenneadecal11, negri11, keemun11</body></html>