Mike Sheiman's Sweet and Sour Interval List
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author mikesheiman and made on 2011-11-22 18:47:52 UTC.
- The original revision id was 278312746.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
|| Sweet || Mild || Borderline/Bridge-able || Sour || || || || || 13/12 (and smaller) || || || || 12/11 || || || || || 11/10 || || || || || 10/9 || || || || 9/8 || || || || || 8/7 || || || || || 7/6 || || || || || || || 13/11 || || 6/5 || || || || || || || 11/9 || || || 5/4 || || || || || || 9/7 || || || || || || || 13/10 || || 4/3 || || || || || || || 15/11 || || || || || 11/8 || || || || 7/5 || || || || || 10/7 || || || || || || 13/9 || || || || || || 16/11 || || || || 22/15 || || || 3/2 || || || || || || || || 20/13 || || || || || 17/11 || || || || 14/9 || || || || || 11/7 || || || || 8/5 || || || || || || || 13/8 || || || || 18/11 || || || 5/3 || || || || || || 12/7 || || || || || 7/4 || || || || || || 16/9 || || || || 9/5 || || || || || || || 20/11 || || || || 13/7 || || || || || 15/8 || || || || || 17/9 || || || || || || 19/10 (and above it, but below 2/1) || Here is a simple list of dyads I prefer (this is NOT tied or derived from to any formal system of interval limits, octave equivalence, Harmonic Entropy, or anything else). Note that bridge-able dyads are borderline/"barely" consonant, but can be bridged IE anything between 15/11 and 11/8 or 14/9 and 11/7 will also sound borderline consonant. Also note that A) Anything within around 8 cents of an interval, to me, sounds like that interval...and B) In cases of "sweet" dyads, anything within about 10 cents flat or up to 15 cents sharp of such dyads usually sound fairly consonant to me. IE a 50/33 sounds "ok" as a super-sharp 3/2.
Original HTML content:
<html><head><title>Mike Sheiman's Sweet and Sour Dyad List</title></head><body> <table class="wiki_table"> <tr> <td>Sweet<br /> </td> <td>Mild<br /> </td> <td>Borderline/Bridge-able<br /> </td> <td>Sour<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13/12 (and smaller)<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>12/11<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>11/10<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>10/9<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>9/8<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>8/7<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>7/6<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13/11<br /> </td> </tr> <tr> <td>6/5<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>11/9<br /> </td> <td><br /> </td> </tr> <tr> <td>5/4<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>9/7<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13/10<br /> </td> </tr> <tr> <td>4/3<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>15/11<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>11/8<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>7/5<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>10/7<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>13/9<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>16/11<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>22/15<br /> </td> <td><br /> </td> </tr> <tr> <td>3/2<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>20/13<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>17/11<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>14/9<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>11/7<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>8/5<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13/8<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>18/11<br /> </td> <td><br /> </td> </tr> <tr> <td>5/3<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>12/7<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>7/4<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>16/9<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>9/5<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>20/11<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>13/7<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>15/8<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>17/9<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>19/10 (and above it, but below 2/1)<br /> </td> </tr> </table> <br /> Here is a simple list of dyads I prefer (this is NOT tied or derived from to any formal system of interval limits, octave equivalence, Harmonic Entropy, or anything else).<br /> Note that bridge-able dyads are borderline/"barely" consonant, but can be bridged IE anything between 15/11 and 11/8 or 14/9 and 11/7 will also sound borderline consonant.<br /> Also note that<br /> A) Anything within around 8 cents of an interval, to me, sounds like that interval...and<br /> B) In cases of "sweet" dyads, anything within about 10 cents flat or up to 15 cents sharp of such dyads usually sound fairly consonant to me. IE a 50/33 sounds "ok" as a super-sharp 3/2.</body></html>