Middle Path table of 5-limit rank-2 temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author keenanpepper and made on 2012-06-07 20:57:28 UTC.
- The original revision id was 343694860.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This table is reproduced from Table 1 of [[Paul Erlich]]'s [[A Middle Path]], with small modifications to update names and improve readability. The "main sequence" of this table "comprises all possible five-limit 2-D cases where complexity/12.33 + damage/10 < 1. The 'exotemperaments' have larger damage and lend themselves to special measures such as custom inharmonic timbres in order to aid harmoniousness. The 'bonus temperaments' are more complex but have exceedingly small damage and sound like JI." See also [[Middle Path table of seven-limit rank two temperaments]], [[Middle Path table of eleven-limit rank two temperaments]]. || Vanishing Interval's Ratio || V.I. Vector || V.I. cents || Temperament name || TOP period || TOP generator || Mapp. of 2 || Mapp. of 3 || Mapp. of 5 || Cmplx. || TOP Dmg. || ETs || |||||||||||||||||||||||| TWO EXOTEMPERAMENTS: || || 16/15 || [4, -1, -1> || 111.7 || [[Father]] || 1185.9 || 447.4 || 1, 0 || 2, -1 || 2, 1 || 2.15 || 14.13 || || || 27/25 || [0, 3, -2> || 133.2 || [[Bug]] || 1200.0 || 260.3 || 1, 0 || 2, -2 || 3, -3 || 2.55 || 14.18 || || |||||||||||||||||||||||| MAIN SEQUENCE: || || 25/24 || [-3, -1, 2> || 70.7 || [[Dicot]] || 1207.66 || 353.22 || 1, 0 || 1, 2 || 2, 1 || 2.51 || 7.66 || [[24edo|24c]], 41cc, (48cc), 58ccc, 65ccc... || || 81/80 || [-4, 4, -1> || 21.5 || [[Meantone]] || 1201.70 || 504.13 || 1, 0 || 2, -1 || 4, -4 || 3.44 || 1.70 || [[12edo|12]], [[19edo|19]], (24), 26, 29c, 31, 33c, (36)... || || 128/125 || [7, 0, -3> || 41.1 || [[Augmented]] || 399.02 || 93.15 || 3, 0 || 5, -1 || 7, 0 || 3.79 || 2.94 || [[12edo|12]], [[15edo|15]], (24), 27, (30), 33, (36), 39... || || 135/128 || [-7, 3, 1> || 92.2 || [[Mavila]] || 1206.55 || 685.03 || 1, 0 || 2, -1 || 1, 3 || 3.83 || 6.55 || [[37edo|37bc]], 44bcc, 67bbccc, (74bbccc)... || || 250/243 || [1, -5, 3> || 49.2 || [[Porcupine]] || 1196.91 || 1034.59 || 1, 0 || 2, -3 || 3, -5 || 4.32 || 3.09 || [[15edo|15]], [[22edo|22]], [[29edo|29]], (30), 36c, 37, 43c, (44)... || || 256/243 || [8, -5, 0> || 90.2 || [[Blackwood]] || 238.87 || 158.78 || 5, 0 || 8, 0 || 11, 1 || 4.33 || 5.67 || [[15edo|15]], [[25edo|25]], (30), 35bc, 40b, (45bc)... || || 648/625 || [3, 4, -4> || 62.6 || [[Diminished]] || 299.16 || 197.49 || 4, 0 || 6, 1 || 9, 1 || 5.06 || 3.36 || [[12edo|12]], (24), 28, 32c, (36), 40, 44c, (48c)... || || 2048/2025 || [11, -4, -2> || 19.6 || [[Srutal]] || 599.56 || 494.86 || 2, 0 || 3, 1 || 5, -2 || 5.97 || 0.89 || [[12edo|12]], [[22edo|22]], (24), 34, (36), (44), 46, (48c), 54... || || 3125/3072 || [-10, -1, 5> || 29.6 || [[Magic]] || 1201.28 || 380.80 || 1, 0 || 0, 5 || 2, 1 || 6.30 || 1.28 || [[19edo|19]], [[22edo|22]], (38), 41, (44), 47b, 54b, (57), 60... || || 6561/6250 || [-1, 8, -5> || 84.1 || [[Ripple]] || 1203.32 || 101.99 || 1, 0 || 2, -5 || 3, -8 || 6.87 || 3.32 || [[12edo|12]], (24), (36), 47, (48c), 59b, (60c)... || || 15625/15552 || [-6, -5, 6> || 8.11 || [[Hanson]] || 1200.29 || 317.07 || 1, 0 || 0, 6 || 1, 5 || 7.57 || 0.29 || [[19edo|19]], [[34edo|34]], (38), 49, 53, (57), 64b, (68)... || || 16875/16384 || [-14, 3, 4> || 51.1 || [[Negri]] || 1201.82 || 1075.68 || 1, 0 || 2, -4 || 2, 3 || 7.62 || 1.82 || [[19edo|19]], [[29edo|29]], (38), 48, (57), (58c), 66b, 67c... || || 20000/19683 || [5, -9, 4> || 27.7 || [[Tetracot]] || 1199.03 || 176.11 || 1, 0 || 1, 4 || 1, 9 || 7.76 || 0.97 || [[27edo|27]], [[34edo|34]], [[41edo|41]], 48, (54c), 55c, 61, (68), 75... || || 20480/19683 || [12, -9, 1> || 68.7 || [[Superpyth]] || 1197.60 || 708.17 || 1, 0 || 2, -1 || 6, -9 || 7.77 || 2.40 || [[22edo|22]], [[27edo|27]], (44), 49, (54c), (66), 71, 76bc... || || 32805/32768 || [-15, 8, 1> || 1.95 || [[Helmholtz]] || 1200.07 || 701.79 || 1, 0 || 2, -1 || -1, 8 || 8.15 || 0.07 || [[41edo|41]], [[53edo|53]], [[65edo|65]], 70c, 77, (82), 89, 94, 99c... || || 78732/78125 || [2, 9, -7> || 13.4 || [[Sensi]] || 1199.59 || 756.60 || 1, 0 || 6, -7 || 8, -9 || 8.84 || 0.41 || [[19edo|19]], (38), [[46edo|46]], (57), 65, 73, (76), 84... || || 262144/253125 || [18, -4, -5> || 60.6 || [[Passion]] || 1198.31 || 98.40 || 1, 0 || 2, -5 || 2, 4 || 9.77 || 1.69 || [[61edo|61]], 73, 85c, 97c, (122bc), 134bc... || || 273375/262144 || [-18, 7, 3> || 72.6 || [[Triton]] || 1202.01 || 569.09 || 1, 0 || 3, -3 || -1, 7 || 9.80 || 2.01 || [almost [[19edo|19]]], 207bbccc, 226bbccc... || || 393216/390625 || [17, 1, -8> || 11.4 || [[Würschmidt]] || 1199.69 || 812.05 || 1, 0 || 7, -8 || 3, -1 || 10.10 || 0.31 || [[31edo|31]], [[34edo|34]], (62), 65, (68), (93), 96, 99... || || 531441/524288 || [-19, 12, 0> || 23.5 || [[Compton]] || 100.05 || 15.13 || 12, 0 || 19, 0 || 28, -1 || 10.33 || 0.62 || [[60edo|60]], [[72edo|72]], 84, 96, 108, 120, (120c), 132c... || || 1594323/1562500 || [-2, 13, -8> || 34.91 || [[Unicorn]] || 1200.85 || 62.64 || 1, 0 || 2, -8 || 3, -13 || 11.19 || 0.85 || [[77edo|77]], 96, 115, (154), 173, (192), 211... || || 1600000/1594323 || [9, -13, 5> || 6.15 || [[Amity]] || 1199.85 || 860.38 || 1, 0 || -2, 5 || -7, 13 || 11.20 || 0.15 || [[53edo|53]], [[99edo|99]], (106), 113, 145, 152, (159)... || || 2109375/2097152 || [-21, 3, 7> || 10.1 || [[Orson]] || 1200.24 || 271.65 || 1, 0 || 0, 7 || 3, -3 || 11.41 || 0.24 || [[53edo|53]], [[84edo|84]], (106), 137, (159), (168), 181... || |||||||||||||||||||||||| TWO BONUS TEMPS: || || 6115295232/6103515625 || [23, 6, -14> || 3.34 || [[Vishnu]] || 599.97 || 71.15 || 2, 0 || 4, -7 || 5, -3 || 17.67 || 0.05 || || || 274877906944/274658203125 || [38, -2, -15> || 1.38 || [[Luna]] || 1199.98 || 193.196 || 1, 0 || 4, -15 || 2, 2 || 20.65 || 0.02 || ||
Original HTML content:
<html><head><title>Middle Path table of five-limit rank two temperaments</title></head><body>This table is reproduced from Table 1 of <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a>'s <a class="wiki_link" href="/A%20Middle%20Path">A Middle Path</a>, with small modifications to update names and improve readability.<br /> <br /> The "main sequence" of this table "comprises all possible five-limit 2-D cases where complexity/12.33 + damage/10 < 1. The 'exotemperaments' have larger damage and lend themselves to special measures such as custom inharmonic timbres in order to aid harmoniousness. The 'bonus temperaments' are more complex but have exceedingly small damage and sound like JI."<br /> <br /> See also <a class="wiki_link" href="/Middle%20Path%20table%20of%20seven-limit%20rank%20two%20temperaments">Middle Path table of seven-limit rank two temperaments</a>, <a class="wiki_link" href="/Middle%20Path%20table%20of%20eleven-limit%20rank%20two%20temperaments">Middle Path table of eleven-limit rank two temperaments</a>.<br /> <br /> <table class="wiki_table"> <tr> <td>Vanishing Interval's Ratio<br /> </td> <td>V.I. Vector<br /> </td> <td>V.I. cents<br /> </td> <td>Temperament<br /> name<br /> </td> <td>TOP<br /> period<br /> </td> <td>TOP<br /> generator<br /> </td> <td>Mapp.<br /> of 2<br /> </td> <td>Mapp.<br /> of 3<br /> </td> <td>Mapp.<br /> of 5<br /> </td> <td>Cmplx.<br /> </td> <td>TOP<br /> Dmg.<br /> </td> <td>ETs<br /> </td> </tr> <tr> <td colspan="12">TWO EXOTEMPERAMENTS:<br /> </td> </tr> <tr> <td>16/15<br /> </td> <td>[4, -1, -1><br /> </td> <td>111.7<br /> </td> <td><a class="wiki_link" href="/Father">Father</a><br /> </td> <td>1185.9<br /> </td> <td>447.4<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>2, 1<br /> </td> <td>2.15<br /> </td> <td>14.13<br /> </td> <td><br /> </td> </tr> <tr> <td>27/25<br /> </td> <td>[0, 3, -2><br /> </td> <td>133.2<br /> </td> <td><a class="wiki_link" href="/Bug">Bug</a><br /> </td> <td>1200.0<br /> </td> <td>260.3<br /> </td> <td>1, 0<br /> </td> <td>2, -2<br /> </td> <td>3, -3<br /> </td> <td>2.55<br /> </td> <td>14.18<br /> </td> <td><br /> </td> </tr> <tr> <td colspan="12">MAIN SEQUENCE:<br /> </td> </tr> <tr> <td>25/24<br /> </td> <td>[-3, -1, 2><br /> </td> <td>70.7<br /> </td> <td><a class="wiki_link" href="/Dicot">Dicot</a><br /> </td> <td>1207.66<br /> </td> <td>353.22<br /> </td> <td>1, 0<br /> </td> <td>1, 2<br /> </td> <td>2, 1<br /> </td> <td>2.51<br /> </td> <td>7.66<br /> </td> <td><a class="wiki_link" href="/24edo">24c</a>, 41cc, (48cc), 58ccc, 65ccc...<br /> </td> </tr> <tr> <td>81/80<br /> </td> <td>[-4, 4, -1><br /> </td> <td>21.5<br /> </td> <td><a class="wiki_link" href="/Meantone">Meantone</a><br /> </td> <td>1201.70<br /> </td> <td>504.13<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>4, -4<br /> </td> <td>3.44<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, (24), 26, 29c, 31, 33c, (36)...<br /> </td> </tr> <tr> <td>128/125<br /> </td> <td>[7, 0, -3><br /> </td> <td>41.1<br /> </td> <td><a class="wiki_link" href="/Augmented">Augmented</a><br /> </td> <td>399.02<br /> </td> <td>93.15<br /> </td> <td>3, 0<br /> </td> <td>5, -1<br /> </td> <td>7, 0<br /> </td> <td>3.79<br /> </td> <td>2.94<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/15edo">15</a>, (24), 27, (30), 33, (36), 39...<br /> </td> </tr> <tr> <td>135/128<br /> </td> <td>[-7, 3, 1><br /> </td> <td>92.2<br /> </td> <td><a class="wiki_link" href="/Mavila">Mavila</a><br /> </td> <td>1206.55<br /> </td> <td>685.03<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>1, 3<br /> </td> <td>3.83<br /> </td> <td>6.55<br /> </td> <td><a class="wiki_link" href="/37edo">37bc</a>, 44bcc, 67bbccc, (74bbccc)...<br /> </td> </tr> <tr> <td>250/243<br /> </td> <td>[1, -5, 3><br /> </td> <td>49.2<br /> </td> <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br /> </td> <td>1196.91<br /> </td> <td>1034.59<br /> </td> <td>1, 0<br /> </td> <td>2, -3<br /> </td> <td>3, -5<br /> </td> <td>4.32<br /> </td> <td>3.09<br /> </td> <td><a class="wiki_link" href="/15edo">15</a>, <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (30), 36c, 37, 43c, (44)...<br /> </td> </tr> <tr> <td>256/243<br /> </td> <td>[8, -5, 0><br /> </td> <td>90.2<br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a><br /> </td> <td>238.87<br /> </td> <td>158.78<br /> </td> <td>5, 0<br /> </td> <td>8, 0<br /> </td> <td>11, 1<br /> </td> <td>4.33<br /> </td> <td>5.67<br /> </td> <td><a class="wiki_link" href="/15edo">15</a>, <a class="wiki_link" href="/25edo">25</a>, (30), 35bc, 40b, (45bc)...<br /> </td> </tr> <tr> <td>648/625<br /> </td> <td>[3, 4, -4><br /> </td> <td>62.6<br /> </td> <td><a class="wiki_link" href="/Diminished">Diminished</a><br /> </td> <td>299.16<br /> </td> <td>197.49<br /> </td> <td>4, 0<br /> </td> <td>6, 1<br /> </td> <td>9, 1<br /> </td> <td>5.06<br /> </td> <td>3.36<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, (24), 28, 32c, (36), 40, 44c, (48c)...<br /> </td> </tr> <tr> <td>2048/2025<br /> </td> <td>[11, -4, -2><br /> </td> <td>19.6<br /> </td> <td><a class="wiki_link" href="/Srutal">Srutal</a><br /> </td> <td>599.56<br /> </td> <td>494.86<br /> </td> <td>2, 0<br /> </td> <td>3, 1<br /> </td> <td>5, -2<br /> </td> <td>5.97<br /> </td> <td>0.89<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/22edo">22</a>, (24), 34, (36), (44), 46, (48c), 54...<br /> </td> </tr> <tr> <td>3125/3072<br /> </td> <td>[-10, -1, 5><br /> </td> <td>29.6<br /> </td> <td><a class="wiki_link" href="/Magic">Magic</a><br /> </td> <td>1201.28<br /> </td> <td>380.80<br /> </td> <td>1, 0<br /> </td> <td>0, 5<br /> </td> <td>2, 1<br /> </td> <td>6.30<br /> </td> <td>1.28<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/22edo">22</a>, (38), 41, (44), 47b, 54b, (57), 60...<br /> </td> </tr> <tr> <td>6561/6250<br /> </td> <td>[-1, 8, -5><br /> </td> <td>84.1<br /> </td> <td><a class="wiki_link" href="/Ripple">Ripple</a><br /> </td> <td>1203.32<br /> </td> <td>101.99<br /> </td> <td>1, 0<br /> </td> <td>2, -5<br /> </td> <td>3, -8<br /> </td> <td>6.87<br /> </td> <td>3.32<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, (24), (36), 47, (48c), 59b, (60c)...<br /> </td> </tr> <tr> <td>15625/15552<br /> </td> <td>[-6, -5, 6><br /> </td> <td>8.11<br /> </td> <td><a class="wiki_link" href="/Hanson">Hanson</a><br /> </td> <td>1200.29<br /> </td> <td>317.07<br /> </td> <td>1, 0<br /> </td> <td>0, 6<br /> </td> <td>1, 5<br /> </td> <td>7.57<br /> </td> <td>0.29<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/34edo">34</a>, (38), 49, 53, (57), 64b, (68)...<br /> </td> </tr> <tr> <td>16875/16384<br /> </td> <td>[-14, 3, 4><br /> </td> <td>51.1<br /> </td> <td><a class="wiki_link" href="/Negri">Negri</a><br /> </td> <td>1201.82<br /> </td> <td>1075.68<br /> </td> <td>1, 0<br /> </td> <td>2, -4<br /> </td> <td>2, 3<br /> </td> <td>7.62<br /> </td> <td>1.82<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/29edo">29</a>, (38), 48, (57), (58c), 66b, 67c...<br /> </td> </tr> <tr> <td>20000/19683<br /> </td> <td>[5, -9, 4><br /> </td> <td>27.7<br /> </td> <td><a class="wiki_link" href="/Tetracot">Tetracot</a><br /> </td> <td>1199.03<br /> </td> <td>176.11<br /> </td> <td>1, 0<br /> </td> <td>1, 4<br /> </td> <td>1, 9<br /> </td> <td>7.76<br /> </td> <td>0.97<br /> </td> <td><a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/41edo">41</a>, 48, (54c), 55c, 61, (68), 75...<br /> </td> </tr> <tr> <td>20480/19683<br /> </td> <td>[12, -9, 1><br /> </td> <td>68.7<br /> </td> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> <td>1197.60<br /> </td> <td>708.17<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>6, -9<br /> </td> <td>7.77<br /> </td> <td>2.40<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/27edo">27</a>, (44), 49, (54c), (66), 71, 76bc...<br /> </td> </tr> <tr> <td>32805/32768<br /> </td> <td>[-15, 8, 1><br /> </td> <td>1.95<br /> </td> <td><a class="wiki_link" href="/Helmholtz">Helmholtz</a><br /> </td> <td>1200.07<br /> </td> <td>701.79<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>-1, 8<br /> </td> <td>8.15<br /> </td> <td>0.07<br /> </td> <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/65edo">65</a>, 70c, 77, (82), 89, 94, 99c...<br /> </td> </tr> <tr> <td>78732/78125<br /> </td> <td>[2, 9, -7><br /> </td> <td>13.4<br /> </td> <td><a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> <td>1199.59<br /> </td> <td>756.60<br /> </td> <td>1, 0<br /> </td> <td>6, -7<br /> </td> <td>8, -9<br /> </td> <td>8.84<br /> </td> <td>0.41<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, (38), <a class="wiki_link" href="/46edo">46</a>, (57), 65, 73, (76), 84...<br /> </td> </tr> <tr> <td>262144/253125<br /> </td> <td>[18, -4, -5><br /> </td> <td>60.6<br /> </td> <td><a class="wiki_link" href="/Passion">Passion</a><br /> </td> <td>1198.31<br /> </td> <td>98.40<br /> </td> <td>1, 0<br /> </td> <td>2, -5<br /> </td> <td>2, 4<br /> </td> <td>9.77<br /> </td> <td>1.69<br /> </td> <td><a class="wiki_link" href="/61edo">61</a>, 73, 85c, 97c, (122bc), 134bc...<br /> </td> </tr> <tr> <td>273375/262144<br /> </td> <td>[-18, 7, 3><br /> </td> <td>72.6<br /> </td> <td><a class="wiki_link" href="/Triton">Triton</a><br /> </td> <td>1202.01<br /> </td> <td>569.09<br /> </td> <td>1, 0<br /> </td> <td>3, -3<br /> </td> <td>-1, 7<br /> </td> <td>9.80<br /> </td> <td>2.01<br /> </td> <td>[almost <a class="wiki_link" href="/19edo">19</a>], 207bbccc, 226bbccc...<br /> </td> </tr> <tr> <td>393216/390625<br /> </td> <td>[17, 1, -8><br /> </td> <td>11.4<br /> </td> <td><a class="wiki_link" href="/W%C3%BCrschmidt">Würschmidt</a><br /> </td> <td>1199.69<br /> </td> <td>812.05<br /> </td> <td>1, 0<br /> </td> <td>7, -8<br /> </td> <td>3, -1<br /> </td> <td>10.10<br /> </td> <td>0.31<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/34edo">34</a>, (62), 65, (68), (93), 96, 99...<br /> </td> </tr> <tr> <td>531441/524288<br /> </td> <td>[-19, 12, 0><br /> </td> <td>23.5<br /> </td> <td><a class="wiki_link" href="/Compton">Compton</a><br /> </td> <td>100.05<br /> </td> <td>15.13<br /> </td> <td>12, 0<br /> </td> <td>19, 0<br /> </td> <td>28, -1<br /> </td> <td>10.33<br /> </td> <td>0.62<br /> </td> <td><a class="wiki_link" href="/60edo">60</a>, <a class="wiki_link" href="/72edo">72</a>, 84, 96, 108, 120, (120c), 132c...<br /> </td> </tr> <tr> <td>1594323/1562500<br /> </td> <td>[-2, 13, -8><br /> </td> <td>34.91<br /> </td> <td><a class="wiki_link" href="/Unicorn">Unicorn</a><br /> </td> <td>1200.85<br /> </td> <td>62.64<br /> </td> <td>1, 0<br /> </td> <td>2, -8<br /> </td> <td>3, -13<br /> </td> <td>11.19<br /> </td> <td>0.85<br /> </td> <td><a class="wiki_link" href="/77edo">77</a>, 96, 115, (154), 173, (192), 211...<br /> </td> </tr> <tr> <td>1600000/1594323<br /> </td> <td>[9, -13, 5><br /> </td> <td>6.15<br /> </td> <td><a class="wiki_link" href="/Amity">Amity</a><br /> </td> <td>1199.85<br /> </td> <td>860.38<br /> </td> <td>1, 0<br /> </td> <td>-2, 5<br /> </td> <td>-7, 13<br /> </td> <td>11.20<br /> </td> <td>0.15<br /> </td> <td><a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/99edo">99</a>, (106), 113, 145, 152, (159)...<br /> </td> </tr> <tr> <td>2109375/2097152<br /> </td> <td>[-21, 3, 7><br /> </td> <td>10.1<br /> </td> <td><a class="wiki_link" href="/Orson">Orson</a><br /> </td> <td>1200.24<br /> </td> <td>271.65<br /> </td> <td>1, 0<br /> </td> <td>0, 7<br /> </td> <td>3, -3<br /> </td> <td>11.41<br /> </td> <td>0.24<br /> </td> <td><a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/84edo">84</a>, (106), 137, (159), (168), 181...<br /> </td> </tr> <tr> <td colspan="12">TWO BONUS TEMPS:<br /> </td> </tr> <tr> <td>6115295232/6103515625<br /> </td> <td>[23, 6, -14><br /> </td> <td>3.34<br /> </td> <td><a class="wiki_link" href="/Vishnu">Vishnu</a><br /> </td> <td>599.97<br /> </td> <td>71.15<br /> </td> <td>2, 0<br /> </td> <td>4, -7<br /> </td> <td>5, -3<br /> </td> <td>17.67<br /> </td> <td>0.05<br /> </td> <td><br /> </td> </tr> <tr> <td>274877906944/274658203125<br /> </td> <td>[38, -2, -15><br /> </td> <td>1.38<br /> </td> <td><a class="wiki_link" href="/Luna">Luna</a><br /> </td> <td>1199.98<br /> </td> <td>193.196<br /> </td> <td>1, 0<br /> </td> <td>4, -15<br /> </td> <td>2, 2<br /> </td> <td>20.65<br /> </td> <td>0.02<br /> </td> <td><br /> </td> </tr> </table> </body></html>