Middle Path table of eleven-limit rank two temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author keenanpepper and made on 2012-01-03 20:06:23 UTC.
- The original revision id was 289395341.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This table is supposed to be the best guess at what would have appeared in [[A Middle Path]] Part 2, had [[Paul Erlich]] finished it. It is similar to the [[Middle Path table of five-limit rank two temperaments]] and [[Middle Path table of seven-limit rank two temperaments]] from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/40 + damage/10 < 1. || Name || Complexity || TOP damage || Mapping || Commas || || [[Duodecim]] || 13.92 || 6.14 || [<12 19 28 34 42|, <0 0 0 0 -1|] || 36/35, 50/49, 64/63, 81/80, 126/125... || || [[Meanenneadecal]] || 16.45 || 5.32 || [<1 2 4 7 6|, <0 -1 -4 -10 -6|] || 45/44, 56/55, 81/80, 100/99, 125/121... || || [[Dominant]] || 16.58 || 4.96 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 36/35, 56/55, 64/63, 81/80, 99/98... || || [[Triforce]] || 17.29 || 5.29 || [<3 4 7 8 10|, <0 2 0 1 1|] || 49/48, 56/55, 77/75, 121/120, 176/175... || || [[Injera]] || 18.19 || 4.06 || [<2 3 4 5 6|, <0 1 4 4 6|] || 45/44, 50/49, 81/80, 99/98, 100/99... || || [[Augene]] || 19.66 || 3.37 || [<3 5 7 8 10|, <0 -1 0 2 2|] || 56/55, 64/63, 100/99, 126/125, 176/175... || || [[Godzilla]] || 19.95 || 4.09 || [<1 2 4 3 6|, <0 -2 -8 -1 -12|] || 45/44, 49/48, 81/80, 100/99, 125/121... || || [[Hedgehog]] || 20.19 || 3.23 || [<2 4 6 7 8|, <0 -3 -5 -5 -4|] || 50/49, 55/54, 99/98, 100/99, 121/120... || || [[Darjeeling]] || 20.46 || 4.41 || [<1 0 1 2 0|, <0 6 5 3 13|] || 49/48, 55/54, 77/75, 126/125, 176/175... || || [[Progress]] || 20.50 || 4.51 || [<1 3 0 0 3|, <0 -3 5 6 1|] || 56/55, 64/63, 77/75, 121/120, 392/375... || || [[Porcupine]] || 20.97 || 3.18 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 55/54, 64/63, 100/99, 121/120, 176/175... || || [[Keemun]] || 21.75 || 4.50 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 49/48, 56/55, 100/99, 126/125, 343/330... || || [[Undevigintone]] || 21.90 || 3.83 || [<19 30 44 53 66|, <0 0 0 0 -1|] || 49/48, 81/80, 126/125, 225/224, 245/243... || || [[Pajara]] || 22.42 || 3.11 || [<2 3 5 6 8|, <0 1 -2 -2 -6|] || 50/49, 64/63, 99/98, 100/99, 176/175... || || [[Nautilus]] || 22.62 || 3.48 || [<1 2 3 3 4|, <0 -6 -10 -3 -8|] || 49/48, 55/54, 100/99, 121/120, 250/243... || || [[Flattone]] || 23.15 || 4.06 || [<1 2 4 -1 6|, <0 -1 -4 9 -6|] || 45/44, 81/80, 100/99, 125/121, 385/384... || || [[Pajarous]] || 23.87 || 3.27 || [<2 3 5 6 6|, <0 1 -2 -2 5|] || 50/49, 55/54, 64/63, 225/224, 385/384... || || [[Catcall]] || 24.08 || 3.56 || [<12 19 28 34 42|, <0 0 0 -1 -1|] || 56/55, 81/80, 128/125, 176/175, 245/242... || || [[Telepathy]] || 24.31 || 3.15 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 55/54, 99/98, 176/175, 225/224, 245/243... || || [[Porky]] || 24.78 || 3.22 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 55/54, 100/99, 121/120, 225/224, 250/243... || || [[Sensis]] || 25.14 || 3.42 || [<1 -1 -1 -2 2|, <0 7 9 13 4|] || 56/55, 100/99, 126/125, 245/243, 540/539... || || [[Suprapyth]] || 25.17 || 3.18 || [<1 2 6 2 1|, <0 -1 -9 2 6|] || 55/54, 64/63, 99/98, 245/243, 352/343... || || [[Vigintiduo]] || 25.48 || 3.28 || [<22 35 51 62 76|, <0 0 0 0 1|] || 50/49, 64/63, 225/224, 245/243, 250/243... || || [[Meantone]] || 26.66 || 1.74 || [<1 2 4 7 11|, <0 -1 -4 -10 -18|] || 81/80, 99/98, 126/125, 176/175, 225/224... || || [[Fleetwood]] || 26.69 || 3.27 || [<2 1 3 4 2|, <0 4 3 3 9|] || 50/49, 55/54, 176/175, 352/343, 540/539... || || [[Quasisupra]] || 28.44 || 2.66 || [<1 2 -3 2 1|, <0 -1 13 2 6|] || 64/63, 99/98, 121/120, 352/343, 540/539... || || [[Orwell]] || 28.52 || 1.36 || [<1 0 3 1 3|, <0 7 -3 8 2|] || 99/98, 121/120, 176/175, 225/224, 385/384... || || [[Squares]] || 28.87 || 1.70 || [<1 3 8 6 7|, <0 -4 -16 -9 -10|] || 81/80, 99/98, 121/120, 441/440, 540/539... || || [[Superpyth]] || 29.17 || 2.40 || [<1 2 6 2 10|, <0 -1 -9 2 -16|] || 64/63, 100/99, 176/175, 245/243, 540/539... || || [[Valentine]] || 31.28 || 1.54 || [<1 1 2 3 3|, <0 9 5 -3 7|] || 121/120, 126/125, 176/175, 385/384, 441/440... || || [[Mohajira]] || 32.31 || 1.70 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 81/80, 121/120, 176/175, 243/242, 385/384... || || [[Magic]] || 32.65 || 1.68 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 100/99, 225/224, 245/243, 385/384, 540/539... || || [[Meanpop]] || 32.69 || 1.70 || [<1 2 4 7 -2|, <0 -1 -4 -10 13|] || 81/80, 126/125, 225/224, 385/384, 540/539... || || [[Migration]] || 32.81 || 1.70 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 81/80, 121/120, 126/125, 225/224, 243/242... || || [[Nusecond]] || 32.94 || 1.70 || [<1 3 4 5 5|, <0 -11 -13 -17 -12|] || 99/98, 121/120, 126/125, 540/539, 891/875... || |||||||||| TWO BONUS TEMPERAMENTS: || || [[Miracle]] || 38.38 || 0.63 || [<1 1 3 3 2|, <0 6 -7 -2 15|] || 225/224, 243/242, 385/384, 441/440, 540/539... || || [[Hemiennealimmal]] || 128.04 || 0.05 || [<18 28 41 50 62|, <0 2 3 2 1|] || 2401/2400, 3025/3024, 4375/4374, 9801/9800... ||
Original HTML content:
<html><head><title>Middle Path table of eleven-limit rank two temperaments</title></head><body>This table is supposed to be the best guess at what would have appeared in <a class="wiki_link" href="/A%20Middle%20Path">A Middle Path</a> Part 2, had <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a> finished it. It is similar to the <a class="wiki_link" href="/Middle%20Path%20table%20of%20five-limit%20rank%20two%20temperaments">Middle Path table of five-limit rank two temperaments</a> and <a class="wiki_link" href="/Middle%20Path%20table%20of%20seven-limit%20rank%20two%20temperaments">Middle Path table of seven-limit rank two temperaments</a> from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/40 + damage/10 < 1.<br /> <br /> <table class="wiki_table"> <tr> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>TOP damage<br /> </td> <td>Mapping<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Duodecim">Duodecim</a><br /> </td> <td>13.92<br /> </td> <td>6.14<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 0 -1|]<br /> </td> <td>36/35, 50/49, 64/63, 81/80, 126/125...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Meanenneadecal">Meanenneadecal</a><br /> </td> <td>16.45<br /> </td> <td>5.32<br /> </td> <td>[<1 2 4 7 6|, <0 -1 -4 -10 -6|]<br /> </td> <td>45/44, 56/55, 81/80, 100/99, 125/121...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Dominant">Dominant</a><br /> </td> <td>16.58<br /> </td> <td>4.96<br /> </td> <td>[<1 2 4 2 1|, <0 -1 -4 2 6|]<br /> </td> <td>36/35, 56/55, 64/63, 81/80, 99/98...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Triforce">Triforce</a><br /> </td> <td>17.29<br /> </td> <td>5.29<br /> </td> <td>[<3 4 7 8 10|, <0 2 0 1 1|]<br /> </td> <td>49/48, 56/55, 77/75, 121/120, 176/175...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Injera">Injera</a><br /> </td> <td>18.19<br /> </td> <td>4.06<br /> </td> <td>[<2 3 4 5 6|, <0 1 4 4 6|]<br /> </td> <td>45/44, 50/49, 81/80, 99/98, 100/99...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Augene">Augene</a><br /> </td> <td>19.66<br /> </td> <td>3.37<br /> </td> <td>[<3 5 7 8 10|, <0 -1 0 2 2|]<br /> </td> <td>56/55, 64/63, 100/99, 126/125, 176/175...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Godzilla">Godzilla</a><br /> </td> <td>19.95<br /> </td> <td>4.09<br /> </td> <td>[<1 2 4 3 6|, <0 -2 -8 -1 -12|]<br /> </td> <td>45/44, 49/48, 81/80, 100/99, 125/121...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Hedgehog">Hedgehog</a><br /> </td> <td>20.19<br /> </td> <td>3.23<br /> </td> <td>[<2 4 6 7 8|, <0 -3 -5 -5 -4|]<br /> </td> <td>50/49, 55/54, 99/98, 100/99, 121/120...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Darjeeling">Darjeeling</a><br /> </td> <td>20.46<br /> </td> <td>4.41<br /> </td> <td>[<1 0 1 2 0|, <0 6 5 3 13|]<br /> </td> <td>49/48, 55/54, 77/75, 126/125, 176/175...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Progress">Progress</a><br /> </td> <td>20.50<br /> </td> <td>4.51<br /> </td> <td>[<1 3 0 0 3|, <0 -3 5 6 1|]<br /> </td> <td>56/55, 64/63, 77/75, 121/120, 392/375...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br /> </td> <td>20.97<br /> </td> <td>3.18<br /> </td> <td>[<1 2 3 2 4|, <0 -3 -5 6 -4|]<br /> </td> <td>55/54, 64/63, 100/99, 121/120, 176/175...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Keemun">Keemun</a><br /> </td> <td>21.75<br /> </td> <td>4.50<br /> </td> <td>[<1 0 1 2 4|, <0 6 5 3 -2|]<br /> </td> <td>49/48, 56/55, 100/99, 126/125, 343/330...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Undevigintone">Undevigintone</a><br /> </td> <td>21.90<br /> </td> <td>3.83<br /> </td> <td>[<19 30 44 53 66|, <0 0 0 0 -1|]<br /> </td> <td>49/48, 81/80, 126/125, 225/224, 245/243...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Pajara">Pajara</a><br /> </td> <td>22.42<br /> </td> <td>3.11<br /> </td> <td>[<2 3 5 6 8|, <0 1 -2 -2 -6|]<br /> </td> <td>50/49, 64/63, 99/98, 100/99, 176/175...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Nautilus">Nautilus</a><br /> </td> <td>22.62<br /> </td> <td>3.48<br /> </td> <td>[<1 2 3 3 4|, <0 -6 -10 -3 -8|]<br /> </td> <td>49/48, 55/54, 100/99, 121/120, 250/243...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Flattone">Flattone</a><br /> </td> <td>23.15<br /> </td> <td>4.06<br /> </td> <td>[<1 2 4 -1 6|, <0 -1 -4 9 -6|]<br /> </td> <td>45/44, 81/80, 100/99, 125/121, 385/384...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Pajarous">Pajarous</a><br /> </td> <td>23.87<br /> </td> <td>3.27<br /> </td> <td>[<2 3 5 6 6|, <0 1 -2 -2 5|]<br /> </td> <td>50/49, 55/54, 64/63, 225/224, 385/384...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Catcall">Catcall</a><br /> </td> <td>24.08<br /> </td> <td>3.56<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 -1 -1|]<br /> </td> <td>56/55, 81/80, 128/125, 176/175, 245/242...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Telepathy">Telepathy</a><br /> </td> <td>24.31<br /> </td> <td>3.15<br /> </td> <td>[<1 0 2 -1 -1|, <0 5 1 12 14|]<br /> </td> <td>55/54, 99/98, 176/175, 225/224, 245/243...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Porky">Porky</a><br /> </td> <td>24.78<br /> </td> <td>3.22<br /> </td> <td>[<1 2 3 5 4|, <0 -3 -5 -16 -4|]<br /> </td> <td>55/54, 100/99, 121/120, 225/224, 250/243...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Sensis">Sensis</a><br /> </td> <td>25.14<br /> </td> <td>3.42<br /> </td> <td>[<1 -1 -1 -2 2|, <0 7 9 13 4|]<br /> </td> <td>56/55, 100/99, 126/125, 245/243, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Suprapyth">Suprapyth</a><br /> </td> <td>25.17<br /> </td> <td>3.18<br /> </td> <td>[<1 2 6 2 1|, <0 -1 -9 2 6|]<br /> </td> <td>55/54, 64/63, 99/98, 245/243, 352/343...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Vigintiduo">Vigintiduo</a><br /> </td> <td>25.48<br /> </td> <td>3.28<br /> </td> <td>[<22 35 51 62 76|, <0 0 0 0 1|]<br /> </td> <td>50/49, 64/63, 225/224, 245/243, 250/243...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Meantone">Meantone</a><br /> </td> <td>26.66<br /> </td> <td>1.74<br /> </td> <td>[<1 2 4 7 11|, <0 -1 -4 -10 -18|]<br /> </td> <td>81/80, 99/98, 126/125, 176/175, 225/224...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Fleetwood">Fleetwood</a><br /> </td> <td>26.69<br /> </td> <td>3.27<br /> </td> <td>[<2 1 3 4 2|, <0 4 3 3 9|]<br /> </td> <td>50/49, 55/54, 176/175, 352/343, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Quasisupra">Quasisupra</a><br /> </td> <td>28.44<br /> </td> <td>2.66<br /> </td> <td>[<1 2 -3 2 1|, <0 -1 13 2 6|]<br /> </td> <td>64/63, 99/98, 121/120, 352/343, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Orwell">Orwell</a><br /> </td> <td>28.52<br /> </td> <td>1.36<br /> </td> <td>[<1 0 3 1 3|, <0 7 -3 8 2|]<br /> </td> <td>99/98, 121/120, 176/175, 225/224, 385/384...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Squares">Squares</a><br /> </td> <td>28.87<br /> </td> <td>1.70<br /> </td> <td>[<1 3 8 6 7|, <0 -4 -16 -9 -10|]<br /> </td> <td>81/80, 99/98, 121/120, 441/440, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> <td>29.17<br /> </td> <td>2.40<br /> </td> <td>[<1 2 6 2 10|, <0 -1 -9 2 -16|]<br /> </td> <td>64/63, 100/99, 176/175, 245/243, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Valentine">Valentine</a><br /> </td> <td>31.28<br /> </td> <td>1.54<br /> </td> <td>[<1 1 2 3 3|, <0 9 5 -3 7|]<br /> </td> <td>121/120, 126/125, 176/175, 385/384, 441/440...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Mohajira">Mohajira</a><br /> </td> <td>32.31<br /> </td> <td>1.70<br /> </td> <td>[<1 1 0 6 2|, <0 2 8 -11 5|]<br /> </td> <td>81/80, 121/120, 176/175, 243/242, 385/384...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Magic">Magic</a><br /> </td> <td>32.65<br /> </td> <td>1.68<br /> </td> <td>[<1 0 2 -1 6|, <0 5 1 12 -8|]<br /> </td> <td>100/99, 225/224, 245/243, 385/384, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Meanpop">Meanpop</a><br /> </td> <td>32.69<br /> </td> <td>1.70<br /> </td> <td>[<1 2 4 7 -2|, <0 -1 -4 -10 13|]<br /> </td> <td>81/80, 126/125, 225/224, 385/384, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Migration">Migration</a><br /> </td> <td>32.81<br /> </td> <td>1.70<br /> </td> <td>[<1 1 0 -3 2|, <0 2 8 20 5|]<br /> </td> <td>81/80, 121/120, 126/125, 225/224, 243/242...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Nusecond">Nusecond</a><br /> </td> <td>32.94<br /> </td> <td>1.70<br /> </td> <td>[<1 3 4 5 5|, <0 -11 -13 -17 -12|]<br /> </td> <td>99/98, 121/120, 126/125, 540/539, 891/875...<br /> </td> </tr> <tr> <td colspan="5">TWO BONUS TEMPERAMENTS:<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Miracle">Miracle</a><br /> </td> <td>38.38<br /> </td> <td>0.63<br /> </td> <td>[<1 1 3 3 2|, <0 6 -7 -2 15|]<br /> </td> <td>225/224, 243/242, 385/384, 441/440, 540/539...<br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Hemiennealimmal">Hemiennealimmal</a><br /> </td> <td>128.04<br /> </td> <td>0.05<br /> </td> <td>[<18 28 41 50 62|, <0 2 3 2 1|]<br /> </td> <td>2401/2400, 3025/3024, 4375/4374, 9801/9800...<br /> </td> </tr> </table> </body></html>