Middle Path table of eleven-limit rank two temperaments

From Xenharmonic Wiki
Revision as of 01:01, 28 July 2012 by Wikispaces>keenanpepper (**Imported revision 355144962 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2012-07-28 01:01:10 UTC.
The original revision id was 355144962.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This table is supposed to be the best guess at what would have appeared in [[A Middle Path]] Part 2, had [[Paul Erlich]] finished it. It is similar to the [[Middle Path table of five-limit rank two temperaments]] and [[Middle Path table of seven-limit rank two temperaments]] from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/7.65 + damage/10 < 1.

|| Commas || Name || TOP
period || TOP
generator || Mapping || Cmplx || TOP
Dmg || ETs ||
|| 36/35, 50/49, 64/63, 81/80, 126/125... || [[Duodecim]] || 99.59 || 31.48 || [<12 19 28 34 42|, <0 0 0 0 -1|] || 2.59 || 6.14 || [[24edo|24d]], [[36edo|36d]], 48cdde, (48cdd)... ||
|| 45/44, 56/55, 81/80, 100/99, 125/121... || [[Meanenneadecal]] || 1198.56 || 503.60 || [<1 2 4 7 6|, <0 -1 -4 -10 -6|] || 3.06 || 5.32 || [[31edo|31e]], [[50edo|50ee]], (62eee), 69dee, 81eee... ||
|| 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... ||
|| 49/48, 56/55, 77/75, 121/120, 176/175... || [[Triforce]] || 399.80 || 155.57 || [<3 4 7 8 10|, <0 2 0 1 1|] || 3.22 || 5.29 || [[39edo|39]], 54cd, 69bcd, (78cd), 93bccdd... ||
|| 45/44, 50/49, 81/80, 99/98, 100/99... || [[Injera]] || 601.24 || 92.99 || [<2 3 4 5 6|, <0 1 4 4 6|] || 3.38 || 4.06 || [[26edo|26]], [[38edo|38e]], 50dee, (52c), 64ce, 66bcc... ||
|| 33/32, 49/48, 77/75, 99/98, 176/175... || [[Negric]] || 1205.30 || 129.26 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 3.52 || 5.30 || [[28edo|28de]], (56bddeee), (84bbdddeeeee)... ||
|| 56/55, 64/63, 100/99, 126/125, 176/175... || [[Augene]] || 398.88 || 87.10 || [<3 5 7 8 10|, <0 -1 0 2 2|] || 3.66 || 3.37 || [[27edo|27e]], [[39edo|39dee]], 42e, (54cee), 57bce... ||
|| 45/44, 49/48, 81/80, 100/99, 125/121... || [[Godzilla]] || 1204.09 || 254.92 || [<1 2 4 3 6|, <0 -2 -8 -1 -12|] || 3.71 || 4.09 || [[33edo|33cd]], 52cd, (66bccdd), 71bcdd... ||
|| 50/49, 55/54, 99/98, 100/99, 121/120... || [[Hedgehog]] || 599.09 || 163.15 || [<2 4 6 7 8|, <0 -3 -5 -5 -4|] || 3.75 || 3.23 || [[22edo|22]], 36ce, (44), 52bdd, 58ce, (66d)... ||
|| 49/48, 55/54, 77/75, 126/125, 176/175... || [[Darjeeling]] || 1202.79 || 318.16 || [<1 0 1 2 0|, <0 6 5 3 13|] || 3.81 || 4.41 || [[34edo|34e]], 53dee, (68dee), 83ddee... ||
|| 56/55, 64/63, 77/75, 121/120, 392/375... || [[Progress]] || 1195.64 || 559.36 || [<1 3 0 0 3|, <0 -3 5 6 1|] || 3.81 || 4.51 || [[47edo|47bc]], 62bcce, (94bbccce)... ||
|| 55/54, 64/63, 100/99, 121/120, 176/175... || [[Porcupine]] || 1198.23 || 163.15 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 3.90 || 3.18 || [[22edo|22]], [[37edo|37]], (44), 52b, 59, (66d), 67b... ||
|| 49/48, 56/55, 100/99, 126/125, 343/330... || [[Keemun]] || 1200.82 || 318.18 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 4.05 || 4.50 || [[83edo|83dde]], 117bddee, 151bdddeee... ||
|| 49/48, 81/80, 126/125, 225/224, 245/243... || [[Undevigintone]] || 63.36 || 30.42 || [<19 30 44 53 66|, <0 0 0 0 -1|] || 4.07 || 3.83 || [[38edo|38d]], 57dd, 57ddee, 76dd, (76dde)... ||
|| 50/49, 64/63, 99/98, 100/99, 176/175... || [[Pajara]] || 598.45 || 106.57 || [<2 3 5 6 8|, <0 1 -2 -2 -6|] || 4.17 || 3.11 || [[22edo|22]], [[34edo|34d]], (44), 46de, 56d, 58ddee... ||
|| 49/48, 55/54, 100/99, 121/120, 250/243... || [[Nautilus]] || 1202.66 || 82.97 || [<1 2 3 3 4|, <0 -6 -10 -3 -8|] || 4.21 || 3.48 || [[29edo|29]], (58cde), 72ccddee, 73cde... ||
|| 45/44, 81/80, 100/99, 125/121, 385/384... || [[Flattone]] || 1203.00 || 508.77 || [<1 2 4 -1 6|, <0 -1 -4 9 -6|] || 4.30 || 4.06 || [[26edo|26]], [[45edo|45]], (52c), 64cde, 71bc, (78bcc)... ||
|| 50/49, 55/54, 64/63, 225/224, 385/384... || [[Pajarous]] || 599.29 || 108.86 || [<2 3 5 6 6|, <0 1 -2 -2 5|] || 4.44 || 3.27 || [[22edo|22]], (44), (66d), (88bd), 98bcd... ||
|| 56/55, 81/80, 128/125, 176/175, 245/242... || [[Catcall]] || 99.81 || 31.73 || [<12 19 28 34 42|, <0 0 0 -1 -1|] || 4.48 || 3.56 || [[36edo|36]], [[48edo|48ce]], (72ce), 84cee, (96cceee)... ||
|| 55/54, 99/98, 176/175, 225/224, 245/243... || [[Telepathy]] || 1199.00 || 381.39 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 4.52 || 3.15 || [[22edo|22]], [[41edo|41e]], (44), 63e, (66d), (82eee)... ||
|| 55/54, 100/99, 121/120, 225/224, 250/243... || [[Porky]] || 1198.78 || 163.50 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 4.61 || 3.22 || [[22edo|22]], [[29edo|29]], (44), 51, (58cde), (66d)... ||
|| 56/55, 100/99, 126/125, 245/243, 540/539... || [[Sensis]] || 1196.58 || 442.49 || [<1 -1 -1 -2 2|, <0 7 9 13 4|] || 4.68 || 3.42 || [[27edo|27e]], (54cee), 73ee, (81bcdeee)... ||
|| 55/54, 64/63, 99/98, 245/243, 352/343... || [[Suprapyth]] || 1198.59 || 490.29 || [<1 2 6 2 1|, <0 -1 -9 2 6|] || 4.68 || 3.18 || [[22edo|22]], (44), (66d), (88bd), 93bde... ||
|| 50/49, 64/63, 225/224, 245/243, 250/243... || [[Vigintiduo]] || 54.48 || 10.51 || [<22 35 51 62 76|, <0 0 0 0 1|] || 4.74 || 3.28 || [[66edo|66de]], 88bde, 110bdd, 110bddee... ||
|| 81/80, 99/98, 126/125, 176/175, 225/224... || [[Meantone]] || 1201.61 || 504.02 || [<1 2 4 7 11|, <0 -1 -4 -10 -18|] || 4.96 || 1.74 || [[31edo|31]], [[43edo|43]], [[50edo|50e]], 55de, (62), 74, 81ee... ||
|| 50/49, 55/54, 176/175, 352/343, 540/539... || [[Fleetwood]] || 599.28 || 272.31 || [<2 5 6 7 11|, <0 -4 -3 -3 -9|] || 4.96 || 3.27 || [[22edo|22]], (44), (66d), (88bd), (110bdde)... ||
|| 50/49, 121/120, 176/175, 352/343, 385/384... || [[Astrology]] || 599.32 || 217.89 || [<2 5 5 6 8|, <0 -5 -1 -1 -3|] || 5.07 || 3.28 || [[22edo|22]], (44), (66d), (88bd), (110bdde)... ||
|| 49/48, 55/54, 225/224, 441/440, 525/512... || [[Negroni]] || 1203.19 || 124.84 || [<1 2 2 3 5|, <0 -4 3 -2 -15|] || 5.11 || 3.19 || [[77edo|77cddee]], 106ccdddeee... ||
|| 64/63, 99/98, 121/120, 352/343, 540/539... || [[Quasisupra]] || 1197.34 || 490.80 || [<1 2 -3 2 1|, <0 -1 13 2 6|] || 5.29 || 2.66 || [[39edo|39d]], 61d, (78cdd), 83d, 100bcdd... ||
|| 99/98, 121/120, 176/175, 225/224, 385/384... || [[Orwell]] || 1201.25 || 271.43 || [<1 0 3 1 3|, <0 7 -3 8 2|] || 5.30 || 1.36 || [[31edo|31]], [[53edo|53]], (62), 75, 84e, (93e), 97de... ||
|| 81/80, 99/98, 121/120, 441/440, 540/539... || [[Squares]] || 1201.70 || 426.46 || [<1 3 8 6 7|, <0 -4 -16 -9 -10|] || 5.37 || 1.70 || [[31edo|31]], 45e, (62), 76e, 79c, 90bcdee... ||
|| 64/63, 100/99, 176/175, 245/243, 540/539... || [[Superpyth]] || 1197.60 || 489.43 || [<1 2 6 2 10|, <0 -1 -9 2 -16|] || 5.42 || 2.40 || [[49edo|49]], 71d, 76bcdee, 93bd, (98bde)... ||
|| 121/120, 126/125, 176/175, 385/384, 441/440... || [[Valentine]] || 1200.87 || 77.63 || [<1 1 2 3 3|, <0 9 5 -3 7|] || 5.82 || 1.54 || [[31edo|31]], [[46edo|46]], (62), 77, (92), (93e), 107c... ||
|| 81/80, 121/120, 176/175, 243/242, 385/384... || [[Mohajira]] || 1201.70 || 348.78 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 6.01 || 1.70 || [[31edo|31]], (62), (93e), (124be), 148be... ||
|| 100/99, 225/224, 245/243, 385/384, 540/539... || [[Magic]] || 1200.75 || 380.92 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 6.07 || 1.68 || [[41edo|41]], [[63edo|63]], (82), 104, (123c), (126c)... ||
|| 81/80, 126/125, 225/224, 385/384, 540/539... || [[Meanpop]] || 1201.70 || 504.13 || [<1 2 4 7 -2|, <0 -1 -4 -10 13|] || 6.08 || 1.70 || [[31edo|31]], [[50edo|50]], (62), 81, (93e), (100d), 112b... ||
|| 81/80, 121/120, 126/125, 225/224, 243/242... || [[Migration]] || 1201.70 || 348.78 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 6.10 || 1.70 || [[31edo|31]], (62), (93e), 100de, (124be)... ||
|| 99/98, 121/120, 126/125, 540/539, 891/875... || [[Nusecond]] || 1200.46 || 154.74 || [<1 3 4 5 5|, <0 -11 -13 -17 -12|] || 6.13 || 1.70 || [[31edo|31]], (62), (93e), 101, (124be), 132ce... ||
|| 100/99, 225/224, 245/242, 441/440, 625/616... || [[Cassandra]] || 1201.36 || 497.94 || [<1 2 -1 -3 -4|, <0 -1 8 14 18|] || 6.19 || 1.79 || [[152edo|152cd]], 193ccd, 234ccd, 263cccdd... ||
|| 225/224, 243/242, 385/384, 441/440, 540/539... || [[Miracle]] || 1200.63 || 116.72 || [<1 1 3 3 2|, <0 6 -7 -2 15|] || 7.14 || 0.63 || [[72edo|72]], (144), (216c), (288cd), (360bcd)... ||
|||||||||||||| A BONUS TEMPERAMENT: ||   ||
|| 2401/2400, 3025/3024, 4375/4374, 9801/9800... || [[Hemiennealimmal]] || 66.67 || 17.64 || [<18 28 41 50 62|, <0 2 3 2 1|] || 23.81 || 0.05 ||   ||

==Comparisons of closely related temperaments== 
|| 36/35, 50/49, 64/63, 81/80, 126/125... || [[Duodecim]] || 99.59 || 31.48 || [<12 19 28 34 42|, <0 0 0 0 -1|] || 2.59 || 6.14 || [[24edo|24d]], [[36edo|36d]], 48cdde, (48cdd)... ||
|| 56/55, 81/80, 128/125, 176/175, 245/242... || [[Catcall]] || 99.81 || 31.73 || [<12 19 28 34 42|, <0 0 0 -1 -1|] || 4.48 || 3.56 || [[36edo|36]], [[48edo|48ce]], (72ce), 84cee, (96cceee)... ||
Since the TOP tunings of duodecim and catcall are so similar, there is little practical use for duodecim temperament. If notes so altered from 12edo are available, there is no reason not to use them for ratios of 7 as well as ratios of 11.

|| 45/44, 56/55, 81/80, 100/99, 125/121... || [[Meanenneadecal]] || 1198.56 || 503.60 || [<1 2 4 7 6|, <0 -1 -4 -10 -6|] || 3.06 || 5.32 || [[31edo|31e]], [[50edo|50ee]], (62eee), 69dee, 81eee... ||
|| 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... ||
|| 45/44, 81/80, 100/99, 125/121, 385/384... || [[Flattone]] || 1203.00 || 508.77 || [<1 2 4 -1 6|, <0 -1 -4 9 -6|] || 4.30 || 4.06 || [[26edo|26]], [[45edo|45]], (52c), 64cde, 71bc, (78bcc)... ||
|| 81/80, 99/98, 126/125, 176/175, 225/224... || [[Meantone]] || 1201.61 || 504.02 || [<1 2 4 7 11|, <0 -1 -4 -10 -18|] || 4.96 || 1.74 || [[31edo|31]], [[43edo|43]], [[50edo|50e]], 55de, (62), 74, 81ee... ||
|| 81/80, 126/125, 225/224, 385/384, 540/539... || [[Meanpop]] || 1201.70 || 504.13 || [<1 2 4 7 -2|, <0 -1 -4 -10 13|] || 6.08 || 1.70 || [[31edo|31]], [[50edo|50]], (62), 81, (93e), (100d), 112b... ||
These temperaments all temper out 81/80, making them extensions of 5-limit meantone. The differences are in the mappings of 7 and 11.

|| 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... ||
|| 55/54, 64/63, 99/98, 245/243, 352/343... || [[Suprapyth]] || 1198.59 || 490.29 || [<1 2 6 2 1|, <0 -1 -9 2 6|] || 4.68 || 3.18 || [[22edo|22]], (44), (66d), (88bd), 93bde... ||
|| 64/63, 99/98, 121/120, 352/343, 540/539... || [[Quasisupra]] || 1197.34 || 490.80 || [<1 2 -3 2 1|, <0 -1 13 2 6|] || 5.29 || 2.66 || [[39edo|39d]], 61d, (78cdd), 83d, 100bcdd... ||
|| 64/63, 100/99, 176/175, 245/243, 540/539... || [[Superpyth]] || 1197.60 || 489.43 || [<1 2 6 2 10|, <0 -1 -9 2 -16|] || 5.42 || 2.40 || [[49edo|49]], 71d, 76bcdee, 93bd, (98bde)... ||
In contrast, these temperaments all temper out 64/63, making them extensions of [[archy]] temperament. The differences are in the mappings of 5 and 11. Temperaments in both this and the above list comprise the dominant family, which has only one representative here. Note that cassandra is in neither of the two families, because it preserves both 64/63 and 81/80 as non-vanishing intervals (and makes them both equal to the Pythagorean comma).

|| 33/32, 49/48, 77/75, 99/98, 176/175... || [[Negric]] || 1205.30 || 129.26 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 3.52 || 5.30 || [[28edo|28de]], (56bddeee), (84bbdddeeeee)... ||
|| 49/48, 55/54, 225/224, 441/440, 525/512... || [[Negroni]] || 1203.19 || 124.84 || [<1 2 2 3 5|, <0 -4 3 -2 -15|] || 5.11 || 3.19 || [[77edo|77cddee]], 106ccdddeee... ||
The difference is only in the mapping of 11. The two temperaments intersect in [[19edo]] (using the 19e val tempering out 33/32), which is a fine tuning for negric (despite that it doesn't show up in the list), but sub-optimal for negroni (which does not temper out 33/32).

|| 50/49, 64/63, 99/98, 100/99, 176/175... || [[Pajara]] || 598.45 || 106.57 || [<2 3 5 6 8|, <0 1 -2 -2 -6|] || 4.17 || 3.11 || [[22edo|22]], [[34edo|34d]], (44), 46de, 56d, 58ddee... ||
|| 50/49, 55/54, 64/63, 225/224, 385/384... || [[Pajarous]] || 599.29 || 108.86 || [<2 3 5 6 6|, <0 1 -2 -2 5|] || 4.44 || 3.27 || [[22edo|22]], (44), (66d), (88bd), 98bcd... ||
The difference is only in the mapping of 11. The two temperaments intersect in [[22edo]], a fine tuning for both.

|| 49/48, 55/54, 77/75, 126/125, 176/175... || [[Darjeeling]] || 1202.79 || 318.16 || [<1 0 1 2 0|, <0 6 5 3 13|] || 3.81 || 4.41 || [[34edo|34e]], 53dee, (68dee), 83ddee... ||
|| 49/48, 56/55, 100/99, 126/125, 343/330... || [[Keemun]] || 1200.82 || 318.18 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 4.05 || 4.50 || [[83edo|83dde]], 117bddee, 151bdddeee... ||
The difference is only in the mapping of 11. The two intersect in [[15edo]], which is, however, not a great tuning for either. In 19edo, darjeeling uses the 19e val, which tempers out 33/32, whereas keemun uses the patent val.

|| 55/54, 64/63, 100/99, 121/120, 176/175... || [[Porcupine]] || 1198.23 || 163.15 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 3.90 || 3.18 || [[22edo|22]], [[37edo|37]], (44), 52b, 59, (66d), 67b... ||
|| 55/54, 100/99, 121/120, 225/224, 250/243... || [[Porky]] || 1198.78 || 163.50 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 4.61 || 3.22 || [[22edo|22]], [[29edo|29]], (44), 51, (58cde), (66d)... ||
The difference is only in the mapping of 7. The two intersect in [[22edo]], which is probably the only reasonable incarnation of porky temperament.

|| 55/54, 99/98, 176/175, 225/224, 245/243... || [[Telepathy]] || 1199.00 || 381.39 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 4.52 || 3.15 || [[22edo|22]], [[41edo|41e]], (44), 63e, (66d), (82eee)... ||
|| 100/99, 225/224, 245/243, 385/384, 540/539... || [[Magic]] || 1200.75 || 380.92 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 6.07 || 1.68 || [[41edo|41]], [[63edo|63]], (82), 104, (123c), (126c)... ||
The difference is only in the mapping of 11. The two intersect in [[22edo]], which is a fine telepathy tuning but slightly sub-optimal for magic. Since telepathy is significantly higher in error, it can be regarded as an alternate version of magic that exists in 22edo.

|| 81/80, 121/120, 176/175, 243/242, 385/384... || [[Mohajira]] || 1201.70 || 348.78 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 6.01 || 1.70 || [[31edo|31]], (62), (93e), (124be), 148be... ||
|| 81/80, 121/120, 126/125, 225/224, 243/242... || [[Migration]] || 1201.70 || 348.78 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 6.10 || 1.70 || [[31edo|31]], (62), (93e), 100de, (124be)... ||
The TOP tunings of mohajira and migration are not merely close, but exactly equal, because the prime 7 does not affect the TOP tuning. The two temperaments intersect in [[31edo]], which is also near-optimal for both.

Original HTML content:

<html><head><title>Middle Path table of eleven-limit rank two temperaments</title></head><body>This table is supposed to be the best guess at what would have appeared in <a class="wiki_link" href="/A%20Middle%20Path">A Middle Path</a> Part 2, had <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a> finished it. It is similar to the <a class="wiki_link" href="/Middle%20Path%20table%20of%20five-limit%20rank%20two%20temperaments">Middle Path table of five-limit rank two temperaments</a> and <a class="wiki_link" href="/Middle%20Path%20table%20of%20seven-limit%20rank%20two%20temperaments">Middle Path table of seven-limit rank two temperaments</a> from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/7.65 + damage/10 &lt; 1.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>Commas<br />
</td>
        <td>Name<br />
</td>
        <td>TOP<br />
period<br />
</td>
        <td>TOP<br />
generator<br />
</td>
        <td>Mapping<br />
</td>
        <td>Cmplx<br />
</td>
        <td>TOP<br />
Dmg<br />
</td>
        <td>ETs<br />
</td>
    </tr>
    <tr>
        <td>36/35, 50/49, 64/63, 81/80, 126/125...<br />
</td>
        <td><a class="wiki_link" href="/Duodecim">Duodecim</a><br />
</td>
        <td>99.59<br />
</td>
        <td>31.48<br />
</td>
        <td>[&lt;12 19 28 34 42|, &lt;0 0 0 0 -1|]<br />
</td>
        <td>2.59<br />
</td>
        <td>6.14<br />
</td>
        <td><a class="wiki_link" href="/24edo">24d</a>, <a class="wiki_link" href="/36edo">36d</a>, 48cdde, (48cdd)...<br />
</td>
    </tr>
    <tr>
        <td>45/44, 56/55, 81/80, 100/99, 125/121...<br />
</td>
        <td><a class="wiki_link" href="/Meanenneadecal">Meanenneadecal</a><br />
</td>
        <td>1198.56<br />
</td>
        <td>503.60<br />
</td>
        <td>[&lt;1 2 4 7 6|, &lt;0 -1 -4 -10 -6|]<br />
</td>
        <td>3.06<br />
</td>
        <td>5.32<br />
</td>
        <td><a class="wiki_link" href="/31edo">31e</a>, <a class="wiki_link" href="/50edo">50ee</a>, (62eee), 69dee, 81eee...<br />
</td>
    </tr>
    <tr>
        <td>36/35, 56/55, 64/63, 81/80, 99/98...<br />
</td>
        <td><a class="wiki_link" href="/Dominant">Dominant</a><br />
</td>
        <td>1195.04<br />
</td>
        <td>495.58<br />
</td>
        <td>[&lt;1 2 4 2 1|, &lt;0 -1 -4 2 6|]<br />
</td>
        <td>3.08<br />
</td>
        <td>4.96<br />
</td>
        <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 56/55, 77/75, 121/120, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Triforce">Triforce</a><br />
</td>
        <td>399.80<br />
</td>
        <td>155.57<br />
</td>
        <td>[&lt;3 4 7 8 10|, &lt;0 2 0 1 1|]<br />
</td>
        <td>3.22<br />
</td>
        <td>5.29<br />
</td>
        <td><a class="wiki_link" href="/39edo">39</a>, 54cd, 69bcd, (78cd), 93bccdd...<br />
</td>
    </tr>
    <tr>
        <td>45/44, 50/49, 81/80, 99/98, 100/99...<br />
</td>
        <td><a class="wiki_link" href="/Injera">Injera</a><br />
</td>
        <td>601.24<br />
</td>
        <td>92.99<br />
</td>
        <td>[&lt;2 3 4 5 6|, &lt;0 1 4 4 6|]<br />
</td>
        <td>3.38<br />
</td>
        <td>4.06<br />
</td>
        <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/38edo">38e</a>, 50dee, (52c), 64ce, 66bcc...<br />
</td>
    </tr>
    <tr>
        <td>33/32, 49/48, 77/75, 99/98, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Negric">Negric</a><br />
</td>
        <td>1205.30<br />
</td>
        <td>129.26<br />
</td>
        <td>[&lt;1 2 2 3 3|, &lt;0 -4 3 -2 4|]<br />
</td>
        <td>3.52<br />
</td>
        <td>5.30<br />
</td>
        <td><a class="wiki_link" href="/28edo">28de</a>, (56bddeee), (84bbdddeeeee)...<br />
</td>
    </tr>
    <tr>
        <td>56/55, 64/63, 100/99, 126/125, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Augene">Augene</a><br />
</td>
        <td>398.88<br />
</td>
        <td>87.10<br />
</td>
        <td>[&lt;3 5 7 8 10|, &lt;0 -1 0 2 2|]<br />
</td>
        <td>3.66<br />
</td>
        <td>3.37<br />
</td>
        <td><a class="wiki_link" href="/27edo">27e</a>, <a class="wiki_link" href="/39edo">39dee</a>, 42e, (54cee), 57bce...<br />
</td>
    </tr>
    <tr>
        <td>45/44, 49/48, 81/80, 100/99, 125/121...<br />
</td>
        <td><a class="wiki_link" href="/Godzilla">Godzilla</a><br />
</td>
        <td>1204.09<br />
</td>
        <td>254.92<br />
</td>
        <td>[&lt;1 2 4 3 6|, &lt;0 -2 -8 -1 -12|]<br />
</td>
        <td>3.71<br />
</td>
        <td>4.09<br />
</td>
        <td><a class="wiki_link" href="/33edo">33cd</a>, 52cd, (66bccdd), 71bcdd...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 55/54, 99/98, 100/99, 121/120...<br />
</td>
        <td><a class="wiki_link" href="/Hedgehog">Hedgehog</a><br />
</td>
        <td>599.09<br />
</td>
        <td>163.15<br />
</td>
        <td>[&lt;2 4 6 7 8|, &lt;0 -3 -5 -5 -4|]<br />
</td>
        <td>3.75<br />
</td>
        <td>3.23<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, 36ce, (44), 52bdd, 58ce, (66d)...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 55/54, 77/75, 126/125, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Darjeeling">Darjeeling</a><br />
</td>
        <td>1202.79<br />
</td>
        <td>318.16<br />
</td>
        <td>[&lt;1 0 1 2 0|, &lt;0 6 5 3 13|]<br />
</td>
        <td>3.81<br />
</td>
        <td>4.41<br />
</td>
        <td><a class="wiki_link" href="/34edo">34e</a>, 53dee, (68dee), 83ddee...<br />
</td>
    </tr>
    <tr>
        <td>56/55, 64/63, 77/75, 121/120, 392/375...<br />
</td>
        <td><a class="wiki_link" href="/Progress">Progress</a><br />
</td>
        <td>1195.64<br />
</td>
        <td>559.36<br />
</td>
        <td>[&lt;1 3 0 0 3|, &lt;0 -3 5 6 1|]<br />
</td>
        <td>3.81<br />
</td>
        <td>4.51<br />
</td>
        <td><a class="wiki_link" href="/47edo">47bc</a>, 62bcce, (94bbccce)...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 64/63, 100/99, 121/120, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br />
</td>
        <td>1198.23<br />
</td>
        <td>163.15<br />
</td>
        <td>[&lt;1 2 3 2 4|, &lt;0 -3 -5 6 -4|]<br />
</td>
        <td>3.90<br />
</td>
        <td>3.18<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/37edo">37</a>, (44), 52b, 59, (66d), 67b...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 56/55, 100/99, 126/125, 343/330...<br />
</td>
        <td><a class="wiki_link" href="/Keemun">Keemun</a><br />
</td>
        <td>1200.82<br />
</td>
        <td>318.18<br />
</td>
        <td>[&lt;1 0 1 2 4|, &lt;0 6 5 3 -2|]<br />
</td>
        <td>4.05<br />
</td>
        <td>4.50<br />
</td>
        <td><a class="wiki_link" href="/83edo">83dde</a>, 117bddee, 151bdddeee...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 81/80, 126/125, 225/224, 245/243...<br />
</td>
        <td><a class="wiki_link" href="/Undevigintone">Undevigintone</a><br />
</td>
        <td>63.36<br />
</td>
        <td>30.42<br />
</td>
        <td>[&lt;19 30 44 53 66|, &lt;0 0 0 0 -1|]<br />
</td>
        <td>4.07<br />
</td>
        <td>3.83<br />
</td>
        <td><a class="wiki_link" href="/38edo">38d</a>, 57dd, 57ddee, 76dd, (76dde)...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 64/63, 99/98, 100/99, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Pajara">Pajara</a><br />
</td>
        <td>598.45<br />
</td>
        <td>106.57<br />
</td>
        <td>[&lt;2 3 5 6 8|, &lt;0 1 -2 -2 -6|]<br />
</td>
        <td>4.17<br />
</td>
        <td>3.11<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/34edo">34d</a>, (44), 46de, 56d, 58ddee...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 55/54, 100/99, 121/120, 250/243...<br />
</td>
        <td><a class="wiki_link" href="/Nautilus">Nautilus</a><br />
</td>
        <td>1202.66<br />
</td>
        <td>82.97<br />
</td>
        <td>[&lt;1 2 3 3 4|, &lt;0 -6 -10 -3 -8|]<br />
</td>
        <td>4.21<br />
</td>
        <td>3.48<br />
</td>
        <td><a class="wiki_link" href="/29edo">29</a>, (58cde), 72ccddee, 73cde...<br />
</td>
    </tr>
    <tr>
        <td>45/44, 81/80, 100/99, 125/121, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Flattone">Flattone</a><br />
</td>
        <td>1203.00<br />
</td>
        <td>508.77<br />
</td>
        <td>[&lt;1 2 4 -1 6|, &lt;0 -1 -4 9 -6|]<br />
</td>
        <td>4.30<br />
</td>
        <td>4.06<br />
</td>
        <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/45edo">45</a>, (52c), 64cde, 71bc, (78bcc)...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 55/54, 64/63, 225/224, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Pajarous">Pajarous</a><br />
</td>
        <td>599.29<br />
</td>
        <td>108.86<br />
</td>
        <td>[&lt;2 3 5 6 6|, &lt;0 1 -2 -2 5|]<br />
</td>
        <td>4.44<br />
</td>
        <td>3.27<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 98bcd...<br />
</td>
    </tr>
    <tr>
        <td>56/55, 81/80, 128/125, 176/175, 245/242...<br />
</td>
        <td><a class="wiki_link" href="/Catcall">Catcall</a><br />
</td>
        <td>99.81<br />
</td>
        <td>31.73<br />
</td>
        <td>[&lt;12 19 28 34 42|, &lt;0 0 0 -1 -1|]<br />
</td>
        <td>4.48<br />
</td>
        <td>3.56<br />
</td>
        <td><a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48ce</a>, (72ce), 84cee, (96cceee)...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 99/98, 176/175, 225/224, 245/243...<br />
</td>
        <td><a class="wiki_link" href="/Telepathy">Telepathy</a><br />
</td>
        <td>1199.00<br />
</td>
        <td>381.39<br />
</td>
        <td>[&lt;1 0 2 -1 -1|, &lt;0 5 1 12 14|]<br />
</td>
        <td>4.52<br />
</td>
        <td>3.15<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/41edo">41e</a>, (44), 63e, (66d), (82eee)...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 100/99, 121/120, 225/224, 250/243...<br />
</td>
        <td><a class="wiki_link" href="/Porky">Porky</a><br />
</td>
        <td>1198.78<br />
</td>
        <td>163.50<br />
</td>
        <td>[&lt;1 2 3 5 4|, &lt;0 -3 -5 -16 -4|]<br />
</td>
        <td>4.61<br />
</td>
        <td>3.22<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (44), 51, (58cde), (66d)...<br />
</td>
    </tr>
    <tr>
        <td>56/55, 100/99, 126/125, 245/243, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Sensis">Sensis</a><br />
</td>
        <td>1196.58<br />
</td>
        <td>442.49<br />
</td>
        <td>[&lt;1 -1 -1 -2 2|, &lt;0 7 9 13 4|]<br />
</td>
        <td>4.68<br />
</td>
        <td>3.42<br />
</td>
        <td><a class="wiki_link" href="/27edo">27e</a>, (54cee), 73ee, (81bcdeee)...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 64/63, 99/98, 245/243, 352/343...<br />
</td>
        <td><a class="wiki_link" href="/Suprapyth">Suprapyth</a><br />
</td>
        <td>1198.59<br />
</td>
        <td>490.29<br />
</td>
        <td>[&lt;1 2 6 2 1|, &lt;0 -1 -9 2 6|]<br />
</td>
        <td>4.68<br />
</td>
        <td>3.18<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 93bde...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 64/63, 225/224, 245/243, 250/243...<br />
</td>
        <td><a class="wiki_link" href="/Vigintiduo">Vigintiduo</a><br />
</td>
        <td>54.48<br />
</td>
        <td>10.51<br />
</td>
        <td>[&lt;22 35 51 62 76|, &lt;0 0 0 0 1|]<br />
</td>
        <td>4.74<br />
</td>
        <td>3.28<br />
</td>
        <td><a class="wiki_link" href="/66edo">66de</a>, 88bde, 110bdd, 110bddee...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 99/98, 126/125, 176/175, 225/224...<br />
</td>
        <td><a class="wiki_link" href="/Meantone">Meantone</a><br />
</td>
        <td>1201.61<br />
</td>
        <td>504.02<br />
</td>
        <td>[&lt;1 2 4 7 11|, &lt;0 -1 -4 -10 -18|]<br />
</td>
        <td>4.96<br />
</td>
        <td>1.74<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/43edo">43</a>, <a class="wiki_link" href="/50edo">50e</a>, 55de, (62), 74, 81ee...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 55/54, 176/175, 352/343, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Fleetwood">Fleetwood</a><br />
</td>
        <td>599.28<br />
</td>
        <td>272.31<br />
</td>
        <td>[&lt;2 5 6 7 11|, &lt;0 -4 -3 -3 -9|]<br />
</td>
        <td>4.96<br />
</td>
        <td>3.27<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), (110bdde)...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 121/120, 176/175, 352/343, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Astrology">Astrology</a><br />
</td>
        <td>599.32<br />
</td>
        <td>217.89<br />
</td>
        <td>[&lt;2 5 5 6 8|, &lt;0 -5 -1 -1 -3|]<br />
</td>
        <td>5.07<br />
</td>
        <td>3.28<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), (110bdde)...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 55/54, 225/224, 441/440, 525/512...<br />
</td>
        <td><a class="wiki_link" href="/Negroni">Negroni</a><br />
</td>
        <td>1203.19<br />
</td>
        <td>124.84<br />
</td>
        <td>[&lt;1 2 2 3 5|, &lt;0 -4 3 -2 -15|]<br />
</td>
        <td>5.11<br />
</td>
        <td>3.19<br />
</td>
        <td><a class="wiki_link" href="/77edo">77cddee</a>, 106ccdddeee...<br />
</td>
    </tr>
    <tr>
        <td>64/63, 99/98, 121/120, 352/343, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Quasisupra">Quasisupra</a><br />
</td>
        <td>1197.34<br />
</td>
        <td>490.80<br />
</td>
        <td>[&lt;1 2 -3 2 1|, &lt;0 -1 13 2 6|]<br />
</td>
        <td>5.29<br />
</td>
        <td>2.66<br />
</td>
        <td><a class="wiki_link" href="/39edo">39d</a>, 61d, (78cdd), 83d, 100bcdd...<br />
</td>
    </tr>
    <tr>
        <td>99/98, 121/120, 176/175, 225/224, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Orwell">Orwell</a><br />
</td>
        <td>1201.25<br />
</td>
        <td>271.43<br />
</td>
        <td>[&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]<br />
</td>
        <td>5.30<br />
</td>
        <td>1.36<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a>, (62), 75, 84e, (93e), 97de...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 99/98, 121/120, 441/440, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Squares">Squares</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>426.46<br />
</td>
        <td>[&lt;1 3 8 6 7|, &lt;0 -4 -16 -9 -10|]<br />
</td>
        <td>5.37<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, 45e, (62), 76e, 79c, 90bcdee...<br />
</td>
    </tr>
    <tr>
        <td>64/63, 100/99, 176/175, 245/243, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br />
</td>
        <td>1197.60<br />
</td>
        <td>489.43<br />
</td>
        <td>[&lt;1 2 6 2 10|, &lt;0 -1 -9 2 -16|]<br />
</td>
        <td>5.42<br />
</td>
        <td>2.40<br />
</td>
        <td><a class="wiki_link" href="/49edo">49</a>, 71d, 76bcdee, 93bd, (98bde)...<br />
</td>
    </tr>
    <tr>
        <td>121/120, 126/125, 176/175, 385/384, 441/440...<br />
</td>
        <td><a class="wiki_link" href="/Valentine">Valentine</a><br />
</td>
        <td>1200.87<br />
</td>
        <td>77.63<br />
</td>
        <td>[&lt;1 1 2 3 3|, &lt;0 9 5 -3 7|]<br />
</td>
        <td>5.82<br />
</td>
        <td>1.54<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/46edo">46</a>, (62), 77, (92), (93e), 107c...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 121/120, 176/175, 243/242, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Mohajira">Mohajira</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>348.78<br />
</td>
        <td>[&lt;1 1 0 6 2|, &lt;0 2 8 -11 5|]<br />
</td>
        <td>6.01<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), (124be), 148be...<br />
</td>
    </tr>
    <tr>
        <td>100/99, 225/224, 245/243, 385/384, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Magic">Magic</a><br />
</td>
        <td>1200.75<br />
</td>
        <td>380.92<br />
</td>
        <td>[&lt;1 0 2 -1 6|, &lt;0 5 1 12 -8|]<br />
</td>
        <td>6.07<br />
</td>
        <td>1.68<br />
</td>
        <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/63edo">63</a>, (82), 104, (123c), (126c)...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 126/125, 225/224, 385/384, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Meanpop">Meanpop</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>504.13<br />
</td>
        <td>[&lt;1 2 4 7 -2|, &lt;0 -1 -4 -10 13|]<br />
</td>
        <td>6.08<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/50edo">50</a>, (62), 81, (93e), (100d), 112b...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 121/120, 126/125, 225/224, 243/242...<br />
</td>
        <td><a class="wiki_link" href="/Migration">Migration</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>348.78<br />
</td>
        <td>[&lt;1 1 0 -3 2|, &lt;0 2 8 20 5|]<br />
</td>
        <td>6.10<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 100de, (124be)...<br />
</td>
    </tr>
    <tr>
        <td>99/98, 121/120, 126/125, 540/539, 891/875...<br />
</td>
        <td><a class="wiki_link" href="/Nusecond">Nusecond</a><br />
</td>
        <td>1200.46<br />
</td>
        <td>154.74<br />
</td>
        <td>[&lt;1 3 4 5 5|, &lt;0 -11 -13 -17 -12|]<br />
</td>
        <td>6.13<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 101, (124be), 132ce...<br />
</td>
    </tr>
    <tr>
        <td>100/99, 225/224, 245/242, 441/440, 625/616...<br />
</td>
        <td><a class="wiki_link" href="/Cassandra">Cassandra</a><br />
</td>
        <td>1201.36<br />
</td>
        <td>497.94<br />
</td>
        <td>[&lt;1 2 -1 -3 -4|, &lt;0 -1 8 14 18|]<br />
</td>
        <td>6.19<br />
</td>
        <td>1.79<br />
</td>
        <td><a class="wiki_link" href="/152edo">152cd</a>, 193ccd, 234ccd, 263cccdd...<br />
</td>
    </tr>
    <tr>
        <td>225/224, 243/242, 385/384, 441/440, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Miracle">Miracle</a><br />
</td>
        <td>1200.63<br />
</td>
        <td>116.72<br />
</td>
        <td>[&lt;1 1 3 3 2|, &lt;0 6 -7 -2 15|]<br />
</td>
        <td>7.14<br />
</td>
        <td>0.63<br />
</td>
        <td><a class="wiki_link" href="/72edo">72</a>, (144), (216c), (288cd), (360bcd)...<br />
</td>
    </tr>
    <tr>
        <td colspan="7">A BONUS TEMPERAMENT:<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2401/2400, 3025/3024, 4375/4374, 9801/9800...<br />
</td>
        <td><a class="wiki_link" href="/Hemiennealimmal">Hemiennealimmal</a><br />
</td>
        <td>66.67<br />
</td>
        <td>17.64<br />
</td>
        <td>[&lt;18 28 41 50 62|, &lt;0 2 3 2 1|]<br />
</td>
        <td>23.81<br />
</td>
        <td>0.05<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Comparisons of closely related temperaments"></a><!-- ws:end:WikiTextHeadingRule:0 -->Comparisons of closely related temperaments</h2>
 

<table class="wiki_table">
    <tr>
        <td>36/35, 50/49, 64/63, 81/80, 126/125...<br />
</td>
        <td><a class="wiki_link" href="/Duodecim">Duodecim</a><br />
</td>
        <td>99.59<br />
</td>
        <td>31.48<br />
</td>
        <td>[&lt;12 19 28 34 42|, &lt;0 0 0 0 -1|]<br />
</td>
        <td>2.59<br />
</td>
        <td>6.14<br />
</td>
        <td><a class="wiki_link" href="/24edo">24d</a>, <a class="wiki_link" href="/36edo">36d</a>, 48cdde, (48cdd)...<br />
</td>
    </tr>
    <tr>
        <td>56/55, 81/80, 128/125, 176/175, 245/242...<br />
</td>
        <td><a class="wiki_link" href="/Catcall">Catcall</a><br />
</td>
        <td>99.81<br />
</td>
        <td>31.73<br />
</td>
        <td>[&lt;12 19 28 34 42|, &lt;0 0 0 -1 -1|]<br />
</td>
        <td>4.48<br />
</td>
        <td>3.56<br />
</td>
        <td><a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48ce</a>, (72ce), 84cee, (96cceee)...<br />
</td>
    </tr>
</table>

Since the TOP tunings of duodecim and catcall are so similar, there is little practical use for duodecim temperament. If notes so altered from 12edo are available, there is no reason not to use them for ratios of 7 as well as ratios of 11.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>45/44, 56/55, 81/80, 100/99, 125/121...<br />
</td>
        <td><a class="wiki_link" href="/Meanenneadecal">Meanenneadecal</a><br />
</td>
        <td>1198.56<br />
</td>
        <td>503.60<br />
</td>
        <td>[&lt;1 2 4 7 6|, &lt;0 -1 -4 -10 -6|]<br />
</td>
        <td>3.06<br />
</td>
        <td>5.32<br />
</td>
        <td><a class="wiki_link" href="/31edo">31e</a>, <a class="wiki_link" href="/50edo">50ee</a>, (62eee), 69dee, 81eee...<br />
</td>
    </tr>
    <tr>
        <td>36/35, 56/55, 64/63, 81/80, 99/98...<br />
</td>
        <td><a class="wiki_link" href="/Dominant">Dominant</a><br />
</td>
        <td>1195.04<br />
</td>
        <td>495.58<br />
</td>
        <td>[&lt;1 2 4 2 1|, &lt;0 -1 -4 2 6|]<br />
</td>
        <td>3.08<br />
</td>
        <td>4.96<br />
</td>
        <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br />
</td>
    </tr>
    <tr>
        <td>45/44, 81/80, 100/99, 125/121, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Flattone">Flattone</a><br />
</td>
        <td>1203.00<br />
</td>
        <td>508.77<br />
</td>
        <td>[&lt;1 2 4 -1 6|, &lt;0 -1 -4 9 -6|]<br />
</td>
        <td>4.30<br />
</td>
        <td>4.06<br />
</td>
        <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/45edo">45</a>, (52c), 64cde, 71bc, (78bcc)...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 99/98, 126/125, 176/175, 225/224...<br />
</td>
        <td><a class="wiki_link" href="/Meantone">Meantone</a><br />
</td>
        <td>1201.61<br />
</td>
        <td>504.02<br />
</td>
        <td>[&lt;1 2 4 7 11|, &lt;0 -1 -4 -10 -18|]<br />
</td>
        <td>4.96<br />
</td>
        <td>1.74<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/43edo">43</a>, <a class="wiki_link" href="/50edo">50e</a>, 55de, (62), 74, 81ee...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 126/125, 225/224, 385/384, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Meanpop">Meanpop</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>504.13<br />
</td>
        <td>[&lt;1 2 4 7 -2|, &lt;0 -1 -4 -10 13|]<br />
</td>
        <td>6.08<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/50edo">50</a>, (62), 81, (93e), (100d), 112b...<br />
</td>
    </tr>
</table>

These temperaments all temper out 81/80, making them extensions of 5-limit meantone. The differences are in the mappings of 7 and 11.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>36/35, 56/55, 64/63, 81/80, 99/98...<br />
</td>
        <td><a class="wiki_link" href="/Dominant">Dominant</a><br />
</td>
        <td>1195.04<br />
</td>
        <td>495.58<br />
</td>
        <td>[&lt;1 2 4 2 1|, &lt;0 -1 -4 2 6|]<br />
</td>
        <td>3.08<br />
</td>
        <td>4.96<br />
</td>
        <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 64/63, 99/98, 245/243, 352/343...<br />
</td>
        <td><a class="wiki_link" href="/Suprapyth">Suprapyth</a><br />
</td>
        <td>1198.59<br />
</td>
        <td>490.29<br />
</td>
        <td>[&lt;1 2 6 2 1|, &lt;0 -1 -9 2 6|]<br />
</td>
        <td>4.68<br />
</td>
        <td>3.18<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 93bde...<br />
</td>
    </tr>
    <tr>
        <td>64/63, 99/98, 121/120, 352/343, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Quasisupra">Quasisupra</a><br />
</td>
        <td>1197.34<br />
</td>
        <td>490.80<br />
</td>
        <td>[&lt;1 2 -3 2 1|, &lt;0 -1 13 2 6|]<br />
</td>
        <td>5.29<br />
</td>
        <td>2.66<br />
</td>
        <td><a class="wiki_link" href="/39edo">39d</a>, 61d, (78cdd), 83d, 100bcdd...<br />
</td>
    </tr>
    <tr>
        <td>64/63, 100/99, 176/175, 245/243, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br />
</td>
        <td>1197.60<br />
</td>
        <td>489.43<br />
</td>
        <td>[&lt;1 2 6 2 10|, &lt;0 -1 -9 2 -16|]<br />
</td>
        <td>5.42<br />
</td>
        <td>2.40<br />
</td>
        <td><a class="wiki_link" href="/49edo">49</a>, 71d, 76bcdee, 93bd, (98bde)...<br />
</td>
    </tr>
</table>

In contrast, these temperaments all temper out 64/63, making them extensions of <a class="wiki_link" href="/archy">archy</a> temperament. The differences are in the mappings of 5 and 11. Temperaments in both this and the above list comprise the dominant family, which has only one representative here. Note that cassandra is in neither of the two families, because it preserves both 64/63 and 81/80 as non-vanishing intervals (and makes them both equal to the Pythagorean comma).<br />
<br />


<table class="wiki_table">
    <tr>
        <td>33/32, 49/48, 77/75, 99/98, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Negric">Negric</a><br />
</td>
        <td>1205.30<br />
</td>
        <td>129.26<br />
</td>
        <td>[&lt;1 2 2 3 3|, &lt;0 -4 3 -2 4|]<br />
</td>
        <td>3.52<br />
</td>
        <td>5.30<br />
</td>
        <td><a class="wiki_link" href="/28edo">28de</a>, (56bddeee), (84bbdddeeeee)...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 55/54, 225/224, 441/440, 525/512...<br />
</td>
        <td><a class="wiki_link" href="/Negroni">Negroni</a><br />
</td>
        <td>1203.19<br />
</td>
        <td>124.84<br />
</td>
        <td>[&lt;1 2 2 3 5|, &lt;0 -4 3 -2 -15|]<br />
</td>
        <td>5.11<br />
</td>
        <td>3.19<br />
</td>
        <td><a class="wiki_link" href="/77edo">77cddee</a>, 106ccdddeee...<br />
</td>
    </tr>
</table>

The difference is only in the mapping of 11. The two temperaments intersect in <a class="wiki_link" href="/19edo">19edo</a> (using the 19e val tempering out 33/32), which is a fine tuning for negric (despite that it doesn't show up in the list), but sub-optimal for negroni (which does not temper out 33/32).<br />
<br />


<table class="wiki_table">
    <tr>
        <td>50/49, 64/63, 99/98, 100/99, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Pajara">Pajara</a><br />
</td>
        <td>598.45<br />
</td>
        <td>106.57<br />
</td>
        <td>[&lt;2 3 5 6 8|, &lt;0 1 -2 -2 -6|]<br />
</td>
        <td>4.17<br />
</td>
        <td>3.11<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/34edo">34d</a>, (44), 46de, 56d, 58ddee...<br />
</td>
    </tr>
    <tr>
        <td>50/49, 55/54, 64/63, 225/224, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Pajarous">Pajarous</a><br />
</td>
        <td>599.29<br />
</td>
        <td>108.86<br />
</td>
        <td>[&lt;2 3 5 6 6|, &lt;0 1 -2 -2 5|]<br />
</td>
        <td>4.44<br />
</td>
        <td>3.27<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 98bcd...<br />
</td>
    </tr>
</table>

The difference is only in the mapping of 11. The two temperaments intersect in <a class="wiki_link" href="/22edo">22edo</a>, a fine tuning for both.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>49/48, 55/54, 77/75, 126/125, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Darjeeling">Darjeeling</a><br />
</td>
        <td>1202.79<br />
</td>
        <td>318.16<br />
</td>
        <td>[&lt;1 0 1 2 0|, &lt;0 6 5 3 13|]<br />
</td>
        <td>3.81<br />
</td>
        <td>4.41<br />
</td>
        <td><a class="wiki_link" href="/34edo">34e</a>, 53dee, (68dee), 83ddee...<br />
</td>
    </tr>
    <tr>
        <td>49/48, 56/55, 100/99, 126/125, 343/330...<br />
</td>
        <td><a class="wiki_link" href="/Keemun">Keemun</a><br />
</td>
        <td>1200.82<br />
</td>
        <td>318.18<br />
</td>
        <td>[&lt;1 0 1 2 4|, &lt;0 6 5 3 -2|]<br />
</td>
        <td>4.05<br />
</td>
        <td>4.50<br />
</td>
        <td><a class="wiki_link" href="/83edo">83dde</a>, 117bddee, 151bdddeee...<br />
</td>
    </tr>
</table>

The difference is only in the mapping of 11. The two intersect in <a class="wiki_link" href="/15edo">15edo</a>, which is, however, not a great tuning for either. In 19edo, darjeeling uses the 19e val, which tempers out 33/32, whereas keemun uses the patent val.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>55/54, 64/63, 100/99, 121/120, 176/175...<br />
</td>
        <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br />
</td>
        <td>1198.23<br />
</td>
        <td>163.15<br />
</td>
        <td>[&lt;1 2 3 2 4|, &lt;0 -3 -5 6 -4|]<br />
</td>
        <td>3.90<br />
</td>
        <td>3.18<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/37edo">37</a>, (44), 52b, 59, (66d), 67b...<br />
</td>
    </tr>
    <tr>
        <td>55/54, 100/99, 121/120, 225/224, 250/243...<br />
</td>
        <td><a class="wiki_link" href="/Porky">Porky</a><br />
</td>
        <td>1198.78<br />
</td>
        <td>163.50<br />
</td>
        <td>[&lt;1 2 3 5 4|, &lt;0 -3 -5 -16 -4|]<br />
</td>
        <td>4.61<br />
</td>
        <td>3.22<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (44), 51, (58cde), (66d)...<br />
</td>
    </tr>
</table>

The difference is only in the mapping of 7. The two intersect in <a class="wiki_link" href="/22edo">22edo</a>, which is probably the only reasonable incarnation of porky temperament.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>55/54, 99/98, 176/175, 225/224, 245/243...<br />
</td>
        <td><a class="wiki_link" href="/Telepathy">Telepathy</a><br />
</td>
        <td>1199.00<br />
</td>
        <td>381.39<br />
</td>
        <td>[&lt;1 0 2 -1 -1|, &lt;0 5 1 12 14|]<br />
</td>
        <td>4.52<br />
</td>
        <td>3.15<br />
</td>
        <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/41edo">41e</a>, (44), 63e, (66d), (82eee)...<br />
</td>
    </tr>
    <tr>
        <td>100/99, 225/224, 245/243, 385/384, 540/539...<br />
</td>
        <td><a class="wiki_link" href="/Magic">Magic</a><br />
</td>
        <td>1200.75<br />
</td>
        <td>380.92<br />
</td>
        <td>[&lt;1 0 2 -1 6|, &lt;0 5 1 12 -8|]<br />
</td>
        <td>6.07<br />
</td>
        <td>1.68<br />
</td>
        <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/63edo">63</a>, (82), 104, (123c), (126c)...<br />
</td>
    </tr>
</table>

The difference is only in the mapping of 11. The two intersect in <a class="wiki_link" href="/22edo">22edo</a>, which is a fine telepathy tuning but slightly sub-optimal for magic. Since telepathy is significantly higher in error, it can be regarded as an alternate version of magic that exists in 22edo.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>81/80, 121/120, 176/175, 243/242, 385/384...<br />
</td>
        <td><a class="wiki_link" href="/Mohajira">Mohajira</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>348.78<br />
</td>
        <td>[&lt;1 1 0 6 2|, &lt;0 2 8 -11 5|]<br />
</td>
        <td>6.01<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), (124be), 148be...<br />
</td>
    </tr>
    <tr>
        <td>81/80, 121/120, 126/125, 225/224, 243/242...<br />
</td>
        <td><a class="wiki_link" href="/Migration">Migration</a><br />
</td>
        <td>1201.70<br />
</td>
        <td>348.78<br />
</td>
        <td>[&lt;1 1 0 -3 2|, &lt;0 2 8 20 5|]<br />
</td>
        <td>6.10<br />
</td>
        <td>1.70<br />
</td>
        <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 100de, (124be)...<br />
</td>
    </tr>
</table>

The TOP tunings of mohajira and migration are not merely close, but exactly equal, because the prime 7 does not affect the TOP tuning. The two temperaments intersect in <a class="wiki_link" href="/31edo">31edo</a>, which is also near-optimal for both.</body></html>