Middle Path table of eleven-limit rank two temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author keenanpepper and made on 2012-07-28 03:04:55 UTC.
- The original revision id was 355150570.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This table is supposed to be the best guess at what would have appeared in [[A Middle Path]] Part 2, had [[Paul Erlich]] finished it. It is similar to the [[Middle Path table of five-limit rank two temperaments]] and [[Middle Path table of seven-limit rank two temperaments]] from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/7.65 + damage/10 < 1. || Commas || Name || TOP period || TOP generator || Mapping || Cmplx || TOP Dmg || ETs || || 36/35, 50/49, 64/63, 81/80, 126/125... || [[Duodecim]] || 99.59 || 31.48 || [<12 19 28 34 42|, <0 0 0 0 -1|] || 2.59 || 6.14 || [[24edo|24d]], [[36edo|36d]], 48cdde, (48cdd)... || || 45/44, 56/55, 81/80, 100/99, 125/121... || [[Meanenneadecal]] || 1198.56 || 503.60 || [<1 2 4 7 6|, <0 -1 -4 -10 -6|] || 3.06 || 5.32 || [[31edo|31e]], [[50edo|50ee]], (62eee), 69dee, 81eee... || || 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... || || 49/48, 56/55, 77/75, 121/120, 176/175... || [[Triforce]] || 399.80 || 155.57 || [<3 4 7 8 10|, <0 2 0 1 1|] || 3.22 || 5.29 || [[39edo|39]], 54cd, 69bcd, (78cd), 93bccdd... || || 45/44, 50/49, 81/80, 99/98, 100/99... || [[Injera]] || 601.24 || 92.99 || [<2 3 4 5 6|, <0 1 4 4 6|] || 3.38 || 4.06 || [[26edo|26]], [[38edo|38e]], 50dee, (52c), 64ce, 66bcc... || || 33/32, 49/48, 77/75, 99/98, 176/175... || [[Negric]] || 1205.30 || 129.26 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 3.52 || 5.30 || [[28edo|28de]], (56bddeee), (84bbdddeeeee)... || || 56/55, 64/63, 100/99, 126/125, 176/175... || [[Augene]] || 398.88 || 87.10 || [<3 5 7 8 10|, <0 -1 0 2 2|] || 3.66 || 3.37 || [[27edo|27e]], [[39edo|39dee]], 42e, (54cee), 57bce... || || 45/44, 49/48, 81/80, 100/99, 125/121... || [[Godzilla]] || 1204.09 || 254.92 || [<1 2 4 3 6|, <0 -2 -8 -1 -12|] || 3.71 || 4.09 || [[33edo|33cd]], 52cd, (66bccdd), 71bcdd... || || 50/49, 55/54, 99/98, 100/99, 121/120... || [[Hedgehog]] || 599.09 || 163.15 || [<2 4 6 7 8|, <0 -3 -5 -5 -4|] || 3.75 || 3.23 || [[22edo|22]], 36ce, (44), 52bdd, 58ce, (66d)... || || 49/48, 55/54, 77/75, 126/125, 176/175... || [[Darjeeling]] || 1202.79 || 318.16 || [<1 0 1 2 0|, <0 6 5 3 13|] || 3.81 || 4.41 || [[34edo|34e]], 53dee, (68dee), 83ddee... || || 56/55, 64/63, 77/75, 121/120, 392/375... || [[Progress]] || 1195.64 || 559.36 || [<1 3 0 0 3|, <0 -3 5 6 1|] || 3.81 || 4.51 || [[47edo|47bc]], 62bcce, (94bbccce)... || || 55/54, 64/63, 100/99, 121/120, 176/175... || [[Porcupine]] || 1198.23 || 163.15 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 3.90 || 3.18 || [[22edo|22]], [[37edo|37]], (44), 52b, 59, (66d), 67b... || || 49/48, 56/55, 100/99, 126/125, 343/330... || [[Keemun]] || 1200.82 || 318.18 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 4.05 || 4.50 || [[83edo|83dde]], 117bddee, 151bdddeee... || || 49/48, 81/80, 126/125, 225/224, 245/243... || [[Undevigintone]] || 63.36 || 30.42 || [<19 30 44 53 66|, <0 0 0 0 -1|] || 4.07 || 3.83 || [[38edo|38d]], 57dd, 57ddee, 76dd, (76dde)... || || 50/49, 64/63, 99/98, 100/99, 176/175... || [[Pajara]] || 598.45 || 106.57 || [<2 3 5 6 8|, <0 1 -2 -2 -6|] || 4.17 || 3.11 || [[22edo|22]], [[34edo|34d]], (44), 46de, 56d, 58ddee... || || 49/48, 55/54, 100/99, 121/120, 250/243... || [[Nautilus]] || 1202.66 || 82.97 || [<1 2 3 3 4|, <0 -6 -10 -3 -8|] || 4.21 || 3.48 || [[29edo|29]], (58cde), 72ccddee, 73cde... || || 45/44, 81/80, 100/99, 125/121, 385/384... || [[Flattone]] || 1203.00 || 508.77 || [<1 2 4 -1 6|, <0 -1 -4 9 -6|] || 4.30 || 4.06 || [[26edo|26]], [[45edo|45]], (52c), 64cde, 71bc, (78bcc)... || || 50/49, 55/54, 64/63, 225/224, 385/384... || [[Pajarous]] || 599.29 || 108.86 || [<2 3 5 6 6|, <0 1 -2 -2 5|] || 4.44 || 3.27 || [[22edo|22]], (44), (66d), (88bd), 98bcd... || || 56/55, 81/80, 128/125, 176/175, 245/242... || [[Catcall]] || 99.81 || 31.73 || [<12 19 28 34 42|, <0 0 0 -1 -1|] || 4.48 || 3.56 || [[36edo|36]], [[48edo|48ce]], (72ce), 84cee, (96cceee)... || || 55/54, 99/98, 176/175, 225/224, 245/243... || [[Telepathy]] || 1199.00 || 381.39 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 4.52 || 3.15 || [[22edo|22]], [[41edo|41e]], (44), 63e, (66d), (82eee)... || || 55/54, 100/99, 121/120, 225/224, 250/243... || [[Porky]] || 1198.78 || 163.50 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 4.61 || 3.22 || [[22edo|22]], [[29edo|29]], (44), 51, (58cde), (66d)... || || 56/55, 100/99, 126/125, 245/243, 540/539... || [[Sensis]] || 1196.58 || 442.49 || [<1 -1 -1 -2 2|, <0 7 9 13 4|] || 4.68 || 3.42 || [[27edo|27e]], (54cee), 73ee, (81bcdeee)... || || 55/54, 64/63, 99/98, 245/243, 352/343... || [[Suprapyth]] || 1198.59 || 490.29 || [<1 2 6 2 1|, <0 -1 -9 2 6|] || 4.68 || 3.18 || [[22edo|22]], (44), (66d), (88bd), 93bde... || || 50/49, 64/63, 225/224, 245/243, 250/243... || [[Vigintiduo]] || 54.48 || 10.51 || [<22 35 51 62 76|, <0 0 0 0 1|] || 4.74 || 3.28 || [[66edo|66de]], 88bde, 110bdd, 110bddee... || || 81/80, 99/98, 126/125, 176/175, 225/224... || [[Meantone]] || 1201.61 || 504.02 || [<1 2 4 7 11|, <0 -1 -4 -10 -18|] || 4.96 || 1.74 || [[31edo|31]], [[43edo|43]], [[50edo|50e]], 55de, (62), 74, 81ee... || || 50/49, 55/54, 176/175, 352/343, 540/539... || [[Fleetwood]] || 599.28 || 272.31 || [<2 5 6 7 11|, <0 -4 -3 -3 -9|] || 4.96 || 3.27 || [[22edo|22]], (44), (66d), (88bd), (110bdde)... || || 50/49, 121/120, 176/175, 352/343, 385/384... || [[Astrology]] || 599.32 || 217.89 || [<2 5 5 6 8|, <0 -5 -1 -1 -3|] || 5.07 || 3.28 || [[22edo|22]], (44), (66d), (88bd), (110bdde)... || || 49/48, 55/54, 225/224, 441/440, 525/512... || [[Negroni]] || 1203.19 || 124.84 || [<1 2 2 3 5|, <0 -4 3 -2 -15|] || 5.11 || 3.19 || [[77edo|77cddee]], 106ccdddeee... || || 64/63, 99/98, 121/120, 352/343, 540/539... || [[Quasisupra]] || 1197.34 || 490.80 || [<1 2 -3 2 1|, <0 -1 13 2 6|] || 5.29 || 2.66 || [[39edo|39d]], 61d, (78cdd), 83d, 100bcdd... || || 99/98, 121/120, 176/175, 225/224, 385/384... || [[Orwell]] || 1201.25 || 271.43 || [<1 0 3 1 3|, <0 7 -3 8 2|] || 5.30 || 1.36 || [[31edo|31]], [[53edo|53]], (62), 75, 84e, (93e), 97de... || || 81/80, 99/98, 121/120, 441/440, 540/539... || [[Squares]] || 1201.70 || 426.46 || [<1 3 8 6 7|, <0 -4 -16 -9 -10|] || 5.37 || 1.70 || [[31edo|31]], 45e, (62), 76e, 79c, 90bcdee... || || 64/63, 100/99, 176/175, 245/243, 540/539... || [[Superpyth]] || 1197.60 || 489.43 || [<1 2 6 2 10|, <0 -1 -9 2 -16|] || 5.42 || 2.40 || [[49edo|49]], 71d, 76bcdee, 93bd, (98bde)... || || 121/120, 126/125, 176/175, 385/384, 441/440... || [[Valentine]] || 1200.87 || 77.63 || [<1 1 2 3 3|, <0 9 5 -3 7|] || 5.82 || 1.54 || [[31edo|31]], [[46edo|46]], (62), 77, (92), (93e), 107c... || || 81/80, 121/120, 176/175, 243/242, 385/384... || [[Mohajira]] || 1201.70 || 348.78 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 6.01 || 1.70 || [[31edo|31]], (62), (93e), (124be), 148be... || || 100/99, 225/224, 245/243, 385/384, 540/539... || [[Magic]] || 1200.75 || 380.92 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 6.07 || 1.68 || [[41edo|41]], [[63edo|63]], (82), 104, (123c), (126c)... || || 81/80, 126/125, 225/224, 385/384, 540/539... || [[Meanpop]] || 1201.70 || 504.13 || [<1 2 4 7 -2|, <0 -1 -4 -10 13|] || 6.08 || 1.70 || [[31edo|31]], [[50edo|50]], (62), 81, (93e), (100d), 112b... || || 81/80, 121/120, 126/125, 225/224, 243/242... || [[Migration]] || 1201.70 || 348.78 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 6.10 || 1.70 || [[31edo|31]], (62), (93e), 100de, (124be)... || || 99/98, 121/120, 126/125, 540/539, 891/875... || [[Nusecond]] || 1200.46 || 154.74 || [<1 3 4 5 5|, <0 -11 -13 -17 -12|] || 6.13 || 1.70 || [[31edo|31]], (62), (93e), 101, (124be), 132ce... || || 100/99, 225/224, 245/242, 441/440, 625/616... || [[Cassandra]] || 1201.36 || 497.94 || [<1 2 -1 -3 -4|, <0 -1 8 14 18|] || 6.19 || 1.79 || [[152edo|152cd]], 193ccd, 234ccd, 263cccdd... || || 225/224, 243/242, 385/384, 441/440, 540/539... || [[Miracle]] || 1200.63 || 116.72 || [<1 1 3 3 2|, <0 6 -7 -2 15|] || 7.14 || 0.63 || [[72edo|72]], (144), (216c), (288cd), (360bcd)... || |||||||||||||| A BONUS TEMPERAMENT: || || || 2401/2400, 3025/3024, 4375/4374, 9801/9800... || [[Hemiennealimmal]] || 66.67 || 17.64 || [<18 28 41 50 62|, <0 2 3 2 1|] || 23.81 || 0.05 || || ==Comparisons of closely related temperaments== || 36/35, 50/49, 64/63, 81/80, 126/125... || [[Duodecim]] || 99.59 || 31.48 || [<12 19 28 34 42|, <0 0 0 0 -1|] || 2.59 || 6.14 || [[24edo|24d]], [[36edo|36d]], 48cdde, (48cdd)... || || 56/55, 81/80, 128/125, 176/175, 245/242... || [[Catcall]] || 99.81 || 31.73 || [<12 19 28 34 42|, <0 0 0 -1 -1|] || 4.48 || 3.56 || [[36edo|36]], [[48edo|48ce]], (72ce), 84cee, (96cceee)... || Since the TOP tunings of duodecim and catcall are so similar, there is little practical use for duodecim temperament. If notes so altered from 12edo are available, there is no reason not to use them for ratios of 7 as well as ratios of 11. || 45/44, 56/55, 81/80, 100/99, 125/121... || [[Meanenneadecal]] || 1198.56 || 503.60 || [<1 2 4 7 6|, <0 -1 -4 -10 -6|] || 3.06 || 5.32 || [[31edo|31e]], [[50edo|50ee]], (62eee), 69dee, 81eee... || || 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... || || 45/44, 81/80, 100/99, 125/121, 385/384... || [[Flattone]] || 1203.00 || 508.77 || [<1 2 4 -1 6|, <0 -1 -4 9 -6|] || 4.30 || 4.06 || [[26edo|26]], [[45edo|45]], (52c), 64cde, 71bc, (78bcc)... || || 81/80, 99/98, 126/125, 176/175, 225/224... || [[Meantone]] || 1201.61 || 504.02 || [<1 2 4 7 11|, <0 -1 -4 -10 -18|] || 4.96 || 1.74 || [[31edo|31]], [[43edo|43]], [[50edo|50e]], 55de, (62), 74, 81ee... || || 81/80, 126/125, 225/224, 385/384, 540/539... || [[Meanpop]] || 1201.70 || 504.13 || [<1 2 4 7 -2|, <0 -1 -4 -10 13|] || 6.08 || 1.70 || [[31edo|31]], [[50edo|50]], (62), 81, (93e), (100d), 112b... || These temperaments all temper out 81/80, making them extensions of 5-limit meantone. The differences are in the mappings of 7 and 11. || 36/35, 56/55, 64/63, 81/80, 99/98... || [[Dominant]] || 1195.04 || 495.58 || [<1 2 4 2 1|, <0 -1 -4 2 6|] || 3.08 || 4.96 || [[29edo|29cde]], 41cdee, 53cddeee... || || 55/54, 64/63, 99/98, 245/243, 352/343... || [[Suprapyth]] || 1198.59 || 490.29 || [<1 2 6 2 1|, <0 -1 -9 2 6|] || 4.68 || 3.18 || [[22edo|22]], (44), (66d), (88bd), 93bde... || || 64/63, 99/98, 121/120, 352/343, 540/539... || [[Quasisupra]] || 1197.34 || 490.80 || [<1 2 -3 2 1|, <0 -1 13 2 6|] || 5.29 || 2.66 || [[39edo|39d]], 61d, (78cdd), 83d, 100bcdd... || || 64/63, 100/99, 176/175, 245/243, 540/539... || [[Superpyth]] || 1197.60 || 489.43 || [<1 2 6 2 10|, <0 -1 -9 2 -16|] || 5.42 || 2.40 || [[49edo|49]], 71d, 76bcdee, 93bd, (98bde)... || In contrast, these temperaments all temper out 64/63, making them extensions of [[archy]] temperament. The differences are in the mappings of 5 and 11. Temperaments in both this and the above list comprise the dominant family, which has only one representative here. Note that cassandra is in neither of the two families, because it preserves both 64/63 and 81/80 as non-vanishing intervals (and makes them both equal to the Pythagorean comma). || 33/32, 49/48, 77/75, 99/98, 176/175... || [[Negric]] || 1205.30 || 129.26 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 3.52 || 5.30 || [[28edo|28de]], (56bddeee), (84bbdddeeeee)... || || 49/48, 55/54, 225/224, 441/440, 525/512... || [[Negroni]] || 1203.19 || 124.84 || [<1 2 2 3 5|, <0 -4 3 -2 -15|] || 5.11 || 3.19 || [[77edo|77cddee]], 106ccdddeee... || The difference is only in the mapping of 11. The two temperaments intersect in [[19edo]] (using the 19e val tempering out 33/32), which is a fine tuning for negric (despite that it doesn't show up in the list), but sub-optimal for negroni (which does not temper out 33/32). || 50/49, 64/63, 99/98, 100/99, 176/175... || [[Pajara]] || 598.45 || 106.57 || [<2 3 5 6 8|, <0 1 -2 -2 -6|] || 4.17 || 3.11 || [[22edo|22]], [[34edo|34d]], (44), 46de, 56d, 58ddee... || || 50/49, 55/54, 64/63, 225/224, 385/384... || [[Pajarous]] || 599.29 || 108.86 || [<2 3 5 6 6|, <0 1 -2 -2 5|] || 4.44 || 3.27 || [[22edo|22]], (44), (66d), (88bd), 98bcd... || The difference is only in the mapping of 11. The two temperaments intersect in [[22edo]], a fine tuning for both. || 49/48, 55/54, 77/75, 126/125, 176/175... || [[Darjeeling]] || 1202.79 || 318.16 || [<1 0 1 2 0|, <0 6 5 3 13|] || 3.81 || 4.41 || [[34edo|34e]], 53dee, (68dee), 83ddee... || || 49/48, 56/55, 100/99, 126/125, 343/330... || [[Keemun]] || 1200.82 || 318.18 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 4.05 || 4.50 || [[83edo|83dde]], 117bddee, 151bdddeee... || The difference is only in the mapping of 11. The two intersect in [[15edo]], which is, however, not a great tuning for either. In 19edo, darjeeling uses the 19e val, which tempers out 33/32, whereas keemun uses the patent val. || 55/54, 64/63, 100/99, 121/120, 176/175... || [[Porcupine]] || 1198.23 || 163.15 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 3.90 || 3.18 || [[22edo|22]], [[37edo|37]], (44), 52b, 59, (66d), 67b... || || 55/54, 100/99, 121/120, 225/224, 250/243... || [[Porky]] || 1198.78 || 163.50 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 4.61 || 3.22 || [[22edo|22]], [[29edo|29]], (44), 51, (58cde), (66d)... || The difference is only in the mapping of 7. The two intersect in [[22edo]], which is probably the only reasonable incarnation of porky temperament. || 55/54, 99/98, 176/175, 225/224, 245/243... || [[Telepathy]] || 1199.00 || 381.39 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 4.52 || 3.15 || [[22edo|22]], [[41edo|41e]], (44), 63e, (66d), (82eee)... || || 100/99, 225/224, 245/243, 385/384, 540/539... || [[Magic]] || 1200.75 || 380.92 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 6.07 || 1.68 || [[41edo|41]], [[63edo|63]], (82), 104, (123c), (126c)... || The difference is only in the mapping of 11. The two intersect in [[22edo]], which is a fine telepathy tuning but slightly sub-optimal for magic. Since telepathy is significantly higher in error, it can be regarded as an alternate version of magic that exists in 22edo. || 81/80, 121/120, 176/175, 243/242, 385/384... || [[Mohajira]] || 1201.70 || 348.78 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 6.01 || 1.70 || [[31edo|31]], (62), (93e), (124be), 148be... || || 81/80, 121/120, 126/125, 225/224, 243/242... || [[Migration]] || 1201.70 || 348.78 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 6.10 || 1.70 || [[31edo|31]], (62), (93e), 100de, (124be)... || The TOP tunings of mohajira and migration are not merely close, but exactly equal, because the prime 7 does not affect the TOP tuning. The two temperaments intersect in [[31edo]], which is also near-optimal for both. || ET || TOP damage || TOP octave || Rank-2 temperaments supported || || 22 || || || hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology || || 24d || || || duodecim || || 26 || || || injera, flattone || || 27e || || || augene, sensis || || 28de || || || negric || || 29 || || || nautilus, porky || || 29cde || || || dominant || || 31 || || || meantone, orwell, squares, valentine, mohajira, meanpop, migration, nusecond || || 31e || || || meanenneadecal || || 33cd || || || godzilla || || 34d || || || pajara || || 34e || || || darjeeling || || 36 || || || catcall || || 36ce || || || hedgehog || || 36d || || || duodecim || || 37 || || || porcupine || || 38d || || || undevigintone || || 38e || || || injera || || 39 || || || triforce || || 39d || || || quasisupra || || 39dee || || || augene || || 41 || || || magic || || 41cdee || || || dominant || || 41e || || || telepathy || || 42e || || || augene || || 43 || || || meantone || || 44* || || || hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology || || 45 || || || flattone || || 45e || || || squares || || 46 || || || valentine || || 46de || || || pajara || || 47bc || || || progress || || 48cdd* || || || duodecim || || 48cdde || || || duodecim || || 48ce || || || catcall || || 49 || || || superpyth || || 50 || || || meanpop || || 50dee || || || injera || || 50e || || || meantone || || 50ee || || || meanenneadecal || || 51 || || || porky || || 52b || || || porcupine || || 52bdd || || || hedgehog || || 52c* || || || injera, flattone || || 52cd || || || godzilla || || 53 || || || orwell || || 53cddeee || || || dominant || || 53dee || || || darjeeling || || 54cd || || || triforce || || 54cee* || || || augene, sensis || || 55de || || || meantone || || 56bddeee* || || || negric || || 56d || || || pajara || || 57bce || || || augene || || 57dd || || || undevigintone || || 57ddee || || || undevigintone || || 58cde* || || || nautilus, porky || || 58ce || || || hedgehog || || 58ccddee* || || || dominant || || 58ddee || || || pajara || || 59 || || || porcupine || || 60cddd || || || duodecim || || 60cdddee || || || duodecim || || 61d || || || quasisupra || || 62* || || || meantone, orwell, squares, valentine, mohajira, meanpop, migration, nusecond || || 62bcce || || || progress || || 62eee* || || || meanenneadecal || || 63 || || || magic || || 63e || || || telepathy || || 64cd || || || injera || || 64cde || || || flattone || || 65ccdddeeee || || || dominant || || 66bcc || || || injera || || 66bccdd* || || || godzilla || || 66d* || || || hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology || || 66de || || || vigintiduo || || 67b || || || porcupine || || 68dde* || || || pajara || || 68dee* || || || darjeeling || || 69bcd || || || triforce || || 69bcee || || || augene || || 69dee || || || meanenneadecal || || 70ccddeee || || || dominant || || 70ddeee || || || pajara || || 71bc || || || flattone || || 71bcdd || || || godzilla || || 71d || || || superpyth || || 72 || || || miracle || || 72bce || || || augene || || 72ccddee || || || nautilus || || 72ccee* || || || hedgehog || || 72cddd* || || || duodecim || || 72cddde* || || || duodecim || || 72cdddeee || || || duodecim || || 72ce* || || || catcall ||
Original HTML content:
<html><head><title>Middle Path table of eleven-limit rank two temperaments</title></head><body>This table is supposed to be the best guess at what would have appeared in <a class="wiki_link" href="/A%20Middle%20Path">A Middle Path</a> Part 2, had <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a> finished it. It is similar to the <a class="wiki_link" href="/Middle%20Path%20table%20of%20five-limit%20rank%20two%20temperaments">Middle Path table of five-limit rank two temperaments</a> and <a class="wiki_link" href="/Middle%20Path%20table%20of%20seven-limit%20rank%20two%20temperaments">Middle Path table of seven-limit rank two temperaments</a> from Part 1. It is intended to comprise all possible 11-limit 2D cases where complexity/7.65 + damage/10 < 1.<br /> <br /> <table class="wiki_table"> <tr> <td>Commas<br /> </td> <td>Name<br /> </td> <td>TOP<br /> period<br /> </td> <td>TOP<br /> generator<br /> </td> <td>Mapping<br /> </td> <td>Cmplx<br /> </td> <td>TOP<br /> Dmg<br /> </td> <td>ETs<br /> </td> </tr> <tr> <td>36/35, 50/49, 64/63, 81/80, 126/125...<br /> </td> <td><a class="wiki_link" href="/Duodecim">Duodecim</a><br /> </td> <td>99.59<br /> </td> <td>31.48<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 0 -1|]<br /> </td> <td>2.59<br /> </td> <td>6.14<br /> </td> <td><a class="wiki_link" href="/24edo">24d</a>, <a class="wiki_link" href="/36edo">36d</a>, 48cdde, (48cdd)...<br /> </td> </tr> <tr> <td>45/44, 56/55, 81/80, 100/99, 125/121...<br /> </td> <td><a class="wiki_link" href="/Meanenneadecal">Meanenneadecal</a><br /> </td> <td>1198.56<br /> </td> <td>503.60<br /> </td> <td>[<1 2 4 7 6|, <0 -1 -4 -10 -6|]<br /> </td> <td>3.06<br /> </td> <td>5.32<br /> </td> <td><a class="wiki_link" href="/31edo">31e</a>, <a class="wiki_link" href="/50edo">50ee</a>, (62eee), 69dee, 81eee...<br /> </td> </tr> <tr> <td>36/35, 56/55, 64/63, 81/80, 99/98...<br /> </td> <td><a class="wiki_link" href="/Dominant">Dominant</a><br /> </td> <td>1195.04<br /> </td> <td>495.58<br /> </td> <td>[<1 2 4 2 1|, <0 -1 -4 2 6|]<br /> </td> <td>3.08<br /> </td> <td>4.96<br /> </td> <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br /> </td> </tr> <tr> <td>49/48, 56/55, 77/75, 121/120, 176/175...<br /> </td> <td><a class="wiki_link" href="/Triforce">Triforce</a><br /> </td> <td>399.80<br /> </td> <td>155.57<br /> </td> <td>[<3 4 7 8 10|, <0 2 0 1 1|]<br /> </td> <td>3.22<br /> </td> <td>5.29<br /> </td> <td><a class="wiki_link" href="/39edo">39</a>, 54cd, 69bcd, (78cd), 93bccdd...<br /> </td> </tr> <tr> <td>45/44, 50/49, 81/80, 99/98, 100/99...<br /> </td> <td><a class="wiki_link" href="/Injera">Injera</a><br /> </td> <td>601.24<br /> </td> <td>92.99<br /> </td> <td>[<2 3 4 5 6|, <0 1 4 4 6|]<br /> </td> <td>3.38<br /> </td> <td>4.06<br /> </td> <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/38edo">38e</a>, 50dee, (52c), 64ce, 66bcc...<br /> </td> </tr> <tr> <td>33/32, 49/48, 77/75, 99/98, 176/175...<br /> </td> <td><a class="wiki_link" href="/Negric">Negric</a><br /> </td> <td>1205.30<br /> </td> <td>129.26<br /> </td> <td>[<1 2 2 3 3|, <0 -4 3 -2 4|]<br /> </td> <td>3.52<br /> </td> <td>5.30<br /> </td> <td><a class="wiki_link" href="/28edo">28de</a>, (56bddeee), (84bbdddeeeee)...<br /> </td> </tr> <tr> <td>56/55, 64/63, 100/99, 126/125, 176/175...<br /> </td> <td><a class="wiki_link" href="/Augene">Augene</a><br /> </td> <td>398.88<br /> </td> <td>87.10<br /> </td> <td>[<3 5 7 8 10|, <0 -1 0 2 2|]<br /> </td> <td>3.66<br /> </td> <td>3.37<br /> </td> <td><a class="wiki_link" href="/27edo">27e</a>, <a class="wiki_link" href="/39edo">39dee</a>, 42e, (54cee), 57bce...<br /> </td> </tr> <tr> <td>45/44, 49/48, 81/80, 100/99, 125/121...<br /> </td> <td><a class="wiki_link" href="/Godzilla">Godzilla</a><br /> </td> <td>1204.09<br /> </td> <td>254.92<br /> </td> <td>[<1 2 4 3 6|, <0 -2 -8 -1 -12|]<br /> </td> <td>3.71<br /> </td> <td>4.09<br /> </td> <td><a class="wiki_link" href="/33edo">33cd</a>, 52cd, (66bccdd), 71bcdd...<br /> </td> </tr> <tr> <td>50/49, 55/54, 99/98, 100/99, 121/120...<br /> </td> <td><a class="wiki_link" href="/Hedgehog">Hedgehog</a><br /> </td> <td>599.09<br /> </td> <td>163.15<br /> </td> <td>[<2 4 6 7 8|, <0 -3 -5 -5 -4|]<br /> </td> <td>3.75<br /> </td> <td>3.23<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, 36ce, (44), 52bdd, 58ce, (66d)...<br /> </td> </tr> <tr> <td>49/48, 55/54, 77/75, 126/125, 176/175...<br /> </td> <td><a class="wiki_link" href="/Darjeeling">Darjeeling</a><br /> </td> <td>1202.79<br /> </td> <td>318.16<br /> </td> <td>[<1 0 1 2 0|, <0 6 5 3 13|]<br /> </td> <td>3.81<br /> </td> <td>4.41<br /> </td> <td><a class="wiki_link" href="/34edo">34e</a>, 53dee, (68dee), 83ddee...<br /> </td> </tr> <tr> <td>56/55, 64/63, 77/75, 121/120, 392/375...<br /> </td> <td><a class="wiki_link" href="/Progress">Progress</a><br /> </td> <td>1195.64<br /> </td> <td>559.36<br /> </td> <td>[<1 3 0 0 3|, <0 -3 5 6 1|]<br /> </td> <td>3.81<br /> </td> <td>4.51<br /> </td> <td><a class="wiki_link" href="/47edo">47bc</a>, 62bcce, (94bbccce)...<br /> </td> </tr> <tr> <td>55/54, 64/63, 100/99, 121/120, 176/175...<br /> </td> <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br /> </td> <td>1198.23<br /> </td> <td>163.15<br /> </td> <td>[<1 2 3 2 4|, <0 -3 -5 6 -4|]<br /> </td> <td>3.90<br /> </td> <td>3.18<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/37edo">37</a>, (44), 52b, 59, (66d), 67b...<br /> </td> </tr> <tr> <td>49/48, 56/55, 100/99, 126/125, 343/330...<br /> </td> <td><a class="wiki_link" href="/Keemun">Keemun</a><br /> </td> <td>1200.82<br /> </td> <td>318.18<br /> </td> <td>[<1 0 1 2 4|, <0 6 5 3 -2|]<br /> </td> <td>4.05<br /> </td> <td>4.50<br /> </td> <td><a class="wiki_link" href="/83edo">83dde</a>, 117bddee, 151bdddeee...<br /> </td> </tr> <tr> <td>49/48, 81/80, 126/125, 225/224, 245/243...<br /> </td> <td><a class="wiki_link" href="/Undevigintone">Undevigintone</a><br /> </td> <td>63.36<br /> </td> <td>30.42<br /> </td> <td>[<19 30 44 53 66|, <0 0 0 0 -1|]<br /> </td> <td>4.07<br /> </td> <td>3.83<br /> </td> <td><a class="wiki_link" href="/38edo">38d</a>, 57dd, 57ddee, 76dd, (76dde)...<br /> </td> </tr> <tr> <td>50/49, 64/63, 99/98, 100/99, 176/175...<br /> </td> <td><a class="wiki_link" href="/Pajara">Pajara</a><br /> </td> <td>598.45<br /> </td> <td>106.57<br /> </td> <td>[<2 3 5 6 8|, <0 1 -2 -2 -6|]<br /> </td> <td>4.17<br /> </td> <td>3.11<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/34edo">34d</a>, (44), 46de, 56d, 58ddee...<br /> </td> </tr> <tr> <td>49/48, 55/54, 100/99, 121/120, 250/243...<br /> </td> <td><a class="wiki_link" href="/Nautilus">Nautilus</a><br /> </td> <td>1202.66<br /> </td> <td>82.97<br /> </td> <td>[<1 2 3 3 4|, <0 -6 -10 -3 -8|]<br /> </td> <td>4.21<br /> </td> <td>3.48<br /> </td> <td><a class="wiki_link" href="/29edo">29</a>, (58cde), 72ccddee, 73cde...<br /> </td> </tr> <tr> <td>45/44, 81/80, 100/99, 125/121, 385/384...<br /> </td> <td><a class="wiki_link" href="/Flattone">Flattone</a><br /> </td> <td>1203.00<br /> </td> <td>508.77<br /> </td> <td>[<1 2 4 -1 6|, <0 -1 -4 9 -6|]<br /> </td> <td>4.30<br /> </td> <td>4.06<br /> </td> <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/45edo">45</a>, (52c), 64cde, 71bc, (78bcc)...<br /> </td> </tr> <tr> <td>50/49, 55/54, 64/63, 225/224, 385/384...<br /> </td> <td><a class="wiki_link" href="/Pajarous">Pajarous</a><br /> </td> <td>599.29<br /> </td> <td>108.86<br /> </td> <td>[<2 3 5 6 6|, <0 1 -2 -2 5|]<br /> </td> <td>4.44<br /> </td> <td>3.27<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 98bcd...<br /> </td> </tr> <tr> <td>56/55, 81/80, 128/125, 176/175, 245/242...<br /> </td> <td><a class="wiki_link" href="/Catcall">Catcall</a><br /> </td> <td>99.81<br /> </td> <td>31.73<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 -1 -1|]<br /> </td> <td>4.48<br /> </td> <td>3.56<br /> </td> <td><a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48ce</a>, (72ce), 84cee, (96cceee)...<br /> </td> </tr> <tr> <td>55/54, 99/98, 176/175, 225/224, 245/243...<br /> </td> <td><a class="wiki_link" href="/Telepathy">Telepathy</a><br /> </td> <td>1199.00<br /> </td> <td>381.39<br /> </td> <td>[<1 0 2 -1 -1|, <0 5 1 12 14|]<br /> </td> <td>4.52<br /> </td> <td>3.15<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/41edo">41e</a>, (44), 63e, (66d), (82eee)...<br /> </td> </tr> <tr> <td>55/54, 100/99, 121/120, 225/224, 250/243...<br /> </td> <td><a class="wiki_link" href="/Porky">Porky</a><br /> </td> <td>1198.78<br /> </td> <td>163.50<br /> </td> <td>[<1 2 3 5 4|, <0 -3 -5 -16 -4|]<br /> </td> <td>4.61<br /> </td> <td>3.22<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (44), 51, (58cde), (66d)...<br /> </td> </tr> <tr> <td>56/55, 100/99, 126/125, 245/243, 540/539...<br /> </td> <td><a class="wiki_link" href="/Sensis">Sensis</a><br /> </td> <td>1196.58<br /> </td> <td>442.49<br /> </td> <td>[<1 -1 -1 -2 2|, <0 7 9 13 4|]<br /> </td> <td>4.68<br /> </td> <td>3.42<br /> </td> <td><a class="wiki_link" href="/27edo">27e</a>, (54cee), 73ee, (81bcdeee)...<br /> </td> </tr> <tr> <td>55/54, 64/63, 99/98, 245/243, 352/343...<br /> </td> <td><a class="wiki_link" href="/Suprapyth">Suprapyth</a><br /> </td> <td>1198.59<br /> </td> <td>490.29<br /> </td> <td>[<1 2 6 2 1|, <0 -1 -9 2 6|]<br /> </td> <td>4.68<br /> </td> <td>3.18<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 93bde...<br /> </td> </tr> <tr> <td>50/49, 64/63, 225/224, 245/243, 250/243...<br /> </td> <td><a class="wiki_link" href="/Vigintiduo">Vigintiduo</a><br /> </td> <td>54.48<br /> </td> <td>10.51<br /> </td> <td>[<22 35 51 62 76|, <0 0 0 0 1|]<br /> </td> <td>4.74<br /> </td> <td>3.28<br /> </td> <td><a class="wiki_link" href="/66edo">66de</a>, 88bde, 110bdd, 110bddee...<br /> </td> </tr> <tr> <td>81/80, 99/98, 126/125, 176/175, 225/224...<br /> </td> <td><a class="wiki_link" href="/Meantone">Meantone</a><br /> </td> <td>1201.61<br /> </td> <td>504.02<br /> </td> <td>[<1 2 4 7 11|, <0 -1 -4 -10 -18|]<br /> </td> <td>4.96<br /> </td> <td>1.74<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/43edo">43</a>, <a class="wiki_link" href="/50edo">50e</a>, 55de, (62), 74, 81ee...<br /> </td> </tr> <tr> <td>50/49, 55/54, 176/175, 352/343, 540/539...<br /> </td> <td><a class="wiki_link" href="/Fleetwood">Fleetwood</a><br /> </td> <td>599.28<br /> </td> <td>272.31<br /> </td> <td>[<2 5 6 7 11|, <0 -4 -3 -3 -9|]<br /> </td> <td>4.96<br /> </td> <td>3.27<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), (110bdde)...<br /> </td> </tr> <tr> <td>50/49, 121/120, 176/175, 352/343, 385/384...<br /> </td> <td><a class="wiki_link" href="/Astrology">Astrology</a><br /> </td> <td>599.32<br /> </td> <td>217.89<br /> </td> <td>[<2 5 5 6 8|, <0 -5 -1 -1 -3|]<br /> </td> <td>5.07<br /> </td> <td>3.28<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), (110bdde)...<br /> </td> </tr> <tr> <td>49/48, 55/54, 225/224, 441/440, 525/512...<br /> </td> <td><a class="wiki_link" href="/Negroni">Negroni</a><br /> </td> <td>1203.19<br /> </td> <td>124.84<br /> </td> <td>[<1 2 2 3 5|, <0 -4 3 -2 -15|]<br /> </td> <td>5.11<br /> </td> <td>3.19<br /> </td> <td><a class="wiki_link" href="/77edo">77cddee</a>, 106ccdddeee...<br /> </td> </tr> <tr> <td>64/63, 99/98, 121/120, 352/343, 540/539...<br /> </td> <td><a class="wiki_link" href="/Quasisupra">Quasisupra</a><br /> </td> <td>1197.34<br /> </td> <td>490.80<br /> </td> <td>[<1 2 -3 2 1|, <0 -1 13 2 6|]<br /> </td> <td>5.29<br /> </td> <td>2.66<br /> </td> <td><a class="wiki_link" href="/39edo">39d</a>, 61d, (78cdd), 83d, 100bcdd...<br /> </td> </tr> <tr> <td>99/98, 121/120, 176/175, 225/224, 385/384...<br /> </td> <td><a class="wiki_link" href="/Orwell">Orwell</a><br /> </td> <td>1201.25<br /> </td> <td>271.43<br /> </td> <td>[<1 0 3 1 3|, <0 7 -3 8 2|]<br /> </td> <td>5.30<br /> </td> <td>1.36<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a>, (62), 75, 84e, (93e), 97de...<br /> </td> </tr> <tr> <td>81/80, 99/98, 121/120, 441/440, 540/539...<br /> </td> <td><a class="wiki_link" href="/Squares">Squares</a><br /> </td> <td>1201.70<br /> </td> <td>426.46<br /> </td> <td>[<1 3 8 6 7|, <0 -4 -16 -9 -10|]<br /> </td> <td>5.37<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, 45e, (62), 76e, 79c, 90bcdee...<br /> </td> </tr> <tr> <td>64/63, 100/99, 176/175, 245/243, 540/539...<br /> </td> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> <td>1197.60<br /> </td> <td>489.43<br /> </td> <td>[<1 2 6 2 10|, <0 -1 -9 2 -16|]<br /> </td> <td>5.42<br /> </td> <td>2.40<br /> </td> <td><a class="wiki_link" href="/49edo">49</a>, 71d, 76bcdee, 93bd, (98bde)...<br /> </td> </tr> <tr> <td>121/120, 126/125, 176/175, 385/384, 441/440...<br /> </td> <td><a class="wiki_link" href="/Valentine">Valentine</a><br /> </td> <td>1200.87<br /> </td> <td>77.63<br /> </td> <td>[<1 1 2 3 3|, <0 9 5 -3 7|]<br /> </td> <td>5.82<br /> </td> <td>1.54<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/46edo">46</a>, (62), 77, (92), (93e), 107c...<br /> </td> </tr> <tr> <td>81/80, 121/120, 176/175, 243/242, 385/384...<br /> </td> <td><a class="wiki_link" href="/Mohajira">Mohajira</a><br /> </td> <td>1201.70<br /> </td> <td>348.78<br /> </td> <td>[<1 1 0 6 2|, <0 2 8 -11 5|]<br /> </td> <td>6.01<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), (124be), 148be...<br /> </td> </tr> <tr> <td>100/99, 225/224, 245/243, 385/384, 540/539...<br /> </td> <td><a class="wiki_link" href="/Magic">Magic</a><br /> </td> <td>1200.75<br /> </td> <td>380.92<br /> </td> <td>[<1 0 2 -1 6|, <0 5 1 12 -8|]<br /> </td> <td>6.07<br /> </td> <td>1.68<br /> </td> <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/63edo">63</a>, (82), 104, (123c), (126c)...<br /> </td> </tr> <tr> <td>81/80, 126/125, 225/224, 385/384, 540/539...<br /> </td> <td><a class="wiki_link" href="/Meanpop">Meanpop</a><br /> </td> <td>1201.70<br /> </td> <td>504.13<br /> </td> <td>[<1 2 4 7 -2|, <0 -1 -4 -10 13|]<br /> </td> <td>6.08<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/50edo">50</a>, (62), 81, (93e), (100d), 112b...<br /> </td> </tr> <tr> <td>81/80, 121/120, 126/125, 225/224, 243/242...<br /> </td> <td><a class="wiki_link" href="/Migration">Migration</a><br /> </td> <td>1201.70<br /> </td> <td>348.78<br /> </td> <td>[<1 1 0 -3 2|, <0 2 8 20 5|]<br /> </td> <td>6.10<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 100de, (124be)...<br /> </td> </tr> <tr> <td>99/98, 121/120, 126/125, 540/539, 891/875...<br /> </td> <td><a class="wiki_link" href="/Nusecond">Nusecond</a><br /> </td> <td>1200.46<br /> </td> <td>154.74<br /> </td> <td>[<1 3 4 5 5|, <0 -11 -13 -17 -12|]<br /> </td> <td>6.13<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 101, (124be), 132ce...<br /> </td> </tr> <tr> <td>100/99, 225/224, 245/242, 441/440, 625/616...<br /> </td> <td><a class="wiki_link" href="/Cassandra">Cassandra</a><br /> </td> <td>1201.36<br /> </td> <td>497.94<br /> </td> <td>[<1 2 -1 -3 -4|, <0 -1 8 14 18|]<br /> </td> <td>6.19<br /> </td> <td>1.79<br /> </td> <td><a class="wiki_link" href="/152edo">152cd</a>, 193ccd, 234ccd, 263cccdd...<br /> </td> </tr> <tr> <td>225/224, 243/242, 385/384, 441/440, 540/539...<br /> </td> <td><a class="wiki_link" href="/Miracle">Miracle</a><br /> </td> <td>1200.63<br /> </td> <td>116.72<br /> </td> <td>[<1 1 3 3 2|, <0 6 -7 -2 15|]<br /> </td> <td>7.14<br /> </td> <td>0.63<br /> </td> <td><a class="wiki_link" href="/72edo">72</a>, (144), (216c), (288cd), (360bcd)...<br /> </td> </tr> <tr> <td colspan="7">A BONUS TEMPERAMENT:<br /> </td> <td><br /> </td> </tr> <tr> <td>2401/2400, 3025/3024, 4375/4374, 9801/9800...<br /> </td> <td><a class="wiki_link" href="/Hemiennealimmal">Hemiennealimmal</a><br /> </td> <td>66.67<br /> </td> <td>17.64<br /> </td> <td>[<18 28 41 50 62|, <0 2 3 2 1|]<br /> </td> <td>23.81<br /> </td> <td>0.05<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Comparisons of closely related temperaments"></a><!-- ws:end:WikiTextHeadingRule:0 -->Comparisons of closely related temperaments</h2> <table class="wiki_table"> <tr> <td>36/35, 50/49, 64/63, 81/80, 126/125...<br /> </td> <td><a class="wiki_link" href="/Duodecim">Duodecim</a><br /> </td> <td>99.59<br /> </td> <td>31.48<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 0 -1|]<br /> </td> <td>2.59<br /> </td> <td>6.14<br /> </td> <td><a class="wiki_link" href="/24edo">24d</a>, <a class="wiki_link" href="/36edo">36d</a>, 48cdde, (48cdd)...<br /> </td> </tr> <tr> <td>56/55, 81/80, 128/125, 176/175, 245/242...<br /> </td> <td><a class="wiki_link" href="/Catcall">Catcall</a><br /> </td> <td>99.81<br /> </td> <td>31.73<br /> </td> <td>[<12 19 28 34 42|, <0 0 0 -1 -1|]<br /> </td> <td>4.48<br /> </td> <td>3.56<br /> </td> <td><a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48ce</a>, (72ce), 84cee, (96cceee)...<br /> </td> </tr> </table> Since the TOP tunings of duodecim and catcall are so similar, there is little practical use for duodecim temperament. If notes so altered from 12edo are available, there is no reason not to use them for ratios of 7 as well as ratios of 11.<br /> <br /> <table class="wiki_table"> <tr> <td>45/44, 56/55, 81/80, 100/99, 125/121...<br /> </td> <td><a class="wiki_link" href="/Meanenneadecal">Meanenneadecal</a><br /> </td> <td>1198.56<br /> </td> <td>503.60<br /> </td> <td>[<1 2 4 7 6|, <0 -1 -4 -10 -6|]<br /> </td> <td>3.06<br /> </td> <td>5.32<br /> </td> <td><a class="wiki_link" href="/31edo">31e</a>, <a class="wiki_link" href="/50edo">50ee</a>, (62eee), 69dee, 81eee...<br /> </td> </tr> <tr> <td>36/35, 56/55, 64/63, 81/80, 99/98...<br /> </td> <td><a class="wiki_link" href="/Dominant">Dominant</a><br /> </td> <td>1195.04<br /> </td> <td>495.58<br /> </td> <td>[<1 2 4 2 1|, <0 -1 -4 2 6|]<br /> </td> <td>3.08<br /> </td> <td>4.96<br /> </td> <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br /> </td> </tr> <tr> <td>45/44, 81/80, 100/99, 125/121, 385/384...<br /> </td> <td><a class="wiki_link" href="/Flattone">Flattone</a><br /> </td> <td>1203.00<br /> </td> <td>508.77<br /> </td> <td>[<1 2 4 -1 6|, <0 -1 -4 9 -6|]<br /> </td> <td>4.30<br /> </td> <td>4.06<br /> </td> <td><a class="wiki_link" href="/26edo">26</a>, <a class="wiki_link" href="/45edo">45</a>, (52c), 64cde, 71bc, (78bcc)...<br /> </td> </tr> <tr> <td>81/80, 99/98, 126/125, 176/175, 225/224...<br /> </td> <td><a class="wiki_link" href="/Meantone">Meantone</a><br /> </td> <td>1201.61<br /> </td> <td>504.02<br /> </td> <td>[<1 2 4 7 11|, <0 -1 -4 -10 -18|]<br /> </td> <td>4.96<br /> </td> <td>1.74<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/43edo">43</a>, <a class="wiki_link" href="/50edo">50e</a>, 55de, (62), 74, 81ee...<br /> </td> </tr> <tr> <td>81/80, 126/125, 225/224, 385/384, 540/539...<br /> </td> <td><a class="wiki_link" href="/Meanpop">Meanpop</a><br /> </td> <td>1201.70<br /> </td> <td>504.13<br /> </td> <td>[<1 2 4 7 -2|, <0 -1 -4 -10 13|]<br /> </td> <td>6.08<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/50edo">50</a>, (62), 81, (93e), (100d), 112b...<br /> </td> </tr> </table> These temperaments all temper out 81/80, making them extensions of 5-limit meantone. The differences are in the mappings of 7 and 11.<br /> <br /> <table class="wiki_table"> <tr> <td>36/35, 56/55, 64/63, 81/80, 99/98...<br /> </td> <td><a class="wiki_link" href="/Dominant">Dominant</a><br /> </td> <td>1195.04<br /> </td> <td>495.58<br /> </td> <td>[<1 2 4 2 1|, <0 -1 -4 2 6|]<br /> </td> <td>3.08<br /> </td> <td>4.96<br /> </td> <td><a class="wiki_link" href="/29edo">29cde</a>, 41cdee, 53cddeee...<br /> </td> </tr> <tr> <td>55/54, 64/63, 99/98, 245/243, 352/343...<br /> </td> <td><a class="wiki_link" href="/Suprapyth">Suprapyth</a><br /> </td> <td>1198.59<br /> </td> <td>490.29<br /> </td> <td>[<1 2 6 2 1|, <0 -1 -9 2 6|]<br /> </td> <td>4.68<br /> </td> <td>3.18<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 93bde...<br /> </td> </tr> <tr> <td>64/63, 99/98, 121/120, 352/343, 540/539...<br /> </td> <td><a class="wiki_link" href="/Quasisupra">Quasisupra</a><br /> </td> <td>1197.34<br /> </td> <td>490.80<br /> </td> <td>[<1 2 -3 2 1|, <0 -1 13 2 6|]<br /> </td> <td>5.29<br /> </td> <td>2.66<br /> </td> <td><a class="wiki_link" href="/39edo">39d</a>, 61d, (78cdd), 83d, 100bcdd...<br /> </td> </tr> <tr> <td>64/63, 100/99, 176/175, 245/243, 540/539...<br /> </td> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> <td>1197.60<br /> </td> <td>489.43<br /> </td> <td>[<1 2 6 2 10|, <0 -1 -9 2 -16|]<br /> </td> <td>5.42<br /> </td> <td>2.40<br /> </td> <td><a class="wiki_link" href="/49edo">49</a>, 71d, 76bcdee, 93bd, (98bde)...<br /> </td> </tr> </table> In contrast, these temperaments all temper out 64/63, making them extensions of <a class="wiki_link" href="/archy">archy</a> temperament. The differences are in the mappings of 5 and 11. Temperaments in both this and the above list comprise the dominant family, which has only one representative here. Note that cassandra is in neither of the two families, because it preserves both 64/63 and 81/80 as non-vanishing intervals (and makes them both equal to the Pythagorean comma).<br /> <br /> <table class="wiki_table"> <tr> <td>33/32, 49/48, 77/75, 99/98, 176/175...<br /> </td> <td><a class="wiki_link" href="/Negric">Negric</a><br /> </td> <td>1205.30<br /> </td> <td>129.26<br /> </td> <td>[<1 2 2 3 3|, <0 -4 3 -2 4|]<br /> </td> <td>3.52<br /> </td> <td>5.30<br /> </td> <td><a class="wiki_link" href="/28edo">28de</a>, (56bddeee), (84bbdddeeeee)...<br /> </td> </tr> <tr> <td>49/48, 55/54, 225/224, 441/440, 525/512...<br /> </td> <td><a class="wiki_link" href="/Negroni">Negroni</a><br /> </td> <td>1203.19<br /> </td> <td>124.84<br /> </td> <td>[<1 2 2 3 5|, <0 -4 3 -2 -15|]<br /> </td> <td>5.11<br /> </td> <td>3.19<br /> </td> <td><a class="wiki_link" href="/77edo">77cddee</a>, 106ccdddeee...<br /> </td> </tr> </table> The difference is only in the mapping of 11. The two temperaments intersect in <a class="wiki_link" href="/19edo">19edo</a> (using the 19e val tempering out 33/32), which is a fine tuning for negric (despite that it doesn't show up in the list), but sub-optimal for negroni (which does not temper out 33/32).<br /> <br /> <table class="wiki_table"> <tr> <td>50/49, 64/63, 99/98, 100/99, 176/175...<br /> </td> <td><a class="wiki_link" href="/Pajara">Pajara</a><br /> </td> <td>598.45<br /> </td> <td>106.57<br /> </td> <td>[<2 3 5 6 8|, <0 1 -2 -2 -6|]<br /> </td> <td>4.17<br /> </td> <td>3.11<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/34edo">34d</a>, (44), 46de, 56d, 58ddee...<br /> </td> </tr> <tr> <td>50/49, 55/54, 64/63, 225/224, 385/384...<br /> </td> <td><a class="wiki_link" href="/Pajarous">Pajarous</a><br /> </td> <td>599.29<br /> </td> <td>108.86<br /> </td> <td>[<2 3 5 6 6|, <0 1 -2 -2 5|]<br /> </td> <td>4.44<br /> </td> <td>3.27<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, (44), (66d), (88bd), 98bcd...<br /> </td> </tr> </table> The difference is only in the mapping of 11. The two temperaments intersect in <a class="wiki_link" href="/22edo">22edo</a>, a fine tuning for both.<br /> <br /> <table class="wiki_table"> <tr> <td>49/48, 55/54, 77/75, 126/125, 176/175...<br /> </td> <td><a class="wiki_link" href="/Darjeeling">Darjeeling</a><br /> </td> <td>1202.79<br /> </td> <td>318.16<br /> </td> <td>[<1 0 1 2 0|, <0 6 5 3 13|]<br /> </td> <td>3.81<br /> </td> <td>4.41<br /> </td> <td><a class="wiki_link" href="/34edo">34e</a>, 53dee, (68dee), 83ddee...<br /> </td> </tr> <tr> <td>49/48, 56/55, 100/99, 126/125, 343/330...<br /> </td> <td><a class="wiki_link" href="/Keemun">Keemun</a><br /> </td> <td>1200.82<br /> </td> <td>318.18<br /> </td> <td>[<1 0 1 2 4|, <0 6 5 3 -2|]<br /> </td> <td>4.05<br /> </td> <td>4.50<br /> </td> <td><a class="wiki_link" href="/83edo">83dde</a>, 117bddee, 151bdddeee...<br /> </td> </tr> </table> The difference is only in the mapping of 11. The two intersect in <a class="wiki_link" href="/15edo">15edo</a>, which is, however, not a great tuning for either. In 19edo, darjeeling uses the 19e val, which tempers out 33/32, whereas keemun uses the patent val.<br /> <br /> <table class="wiki_table"> <tr> <td>55/54, 64/63, 100/99, 121/120, 176/175...<br /> </td> <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br /> </td> <td>1198.23<br /> </td> <td>163.15<br /> </td> <td>[<1 2 3 2 4|, <0 -3 -5 6 -4|]<br /> </td> <td>3.90<br /> </td> <td>3.18<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/37edo">37</a>, (44), 52b, 59, (66d), 67b...<br /> </td> </tr> <tr> <td>55/54, 100/99, 121/120, 225/224, 250/243...<br /> </td> <td><a class="wiki_link" href="/Porky">Porky</a><br /> </td> <td>1198.78<br /> </td> <td>163.50<br /> </td> <td>[<1 2 3 5 4|, <0 -3 -5 -16 -4|]<br /> </td> <td>4.61<br /> </td> <td>3.22<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (44), 51, (58cde), (66d)...<br /> </td> </tr> </table> The difference is only in the mapping of 7. The two intersect in <a class="wiki_link" href="/22edo">22edo</a>, which is probably the only reasonable incarnation of porky temperament.<br /> <br /> <table class="wiki_table"> <tr> <td>55/54, 99/98, 176/175, 225/224, 245/243...<br /> </td> <td><a class="wiki_link" href="/Telepathy">Telepathy</a><br /> </td> <td>1199.00<br /> </td> <td>381.39<br /> </td> <td>[<1 0 2 -1 -1|, <0 5 1 12 14|]<br /> </td> <td>4.52<br /> </td> <td>3.15<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/41edo">41e</a>, (44), 63e, (66d), (82eee)...<br /> </td> </tr> <tr> <td>100/99, 225/224, 245/243, 385/384, 540/539...<br /> </td> <td><a class="wiki_link" href="/Magic">Magic</a><br /> </td> <td>1200.75<br /> </td> <td>380.92<br /> </td> <td>[<1 0 2 -1 6|, <0 5 1 12 -8|]<br /> </td> <td>6.07<br /> </td> <td>1.68<br /> </td> <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/63edo">63</a>, (82), 104, (123c), (126c)...<br /> </td> </tr> </table> The difference is only in the mapping of 11. The two intersect in <a class="wiki_link" href="/22edo">22edo</a>, which is a fine telepathy tuning but slightly sub-optimal for magic. Since telepathy is significantly higher in error, it can be regarded as an alternate version of magic that exists in 22edo.<br /> <br /> <table class="wiki_table"> <tr> <td>81/80, 121/120, 176/175, 243/242, 385/384...<br /> </td> <td><a class="wiki_link" href="/Mohajira">Mohajira</a><br /> </td> <td>1201.70<br /> </td> <td>348.78<br /> </td> <td>[<1 1 0 6 2|, <0 2 8 -11 5|]<br /> </td> <td>6.01<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), (124be), 148be...<br /> </td> </tr> <tr> <td>81/80, 121/120, 126/125, 225/224, 243/242...<br /> </td> <td><a class="wiki_link" href="/Migration">Migration</a><br /> </td> <td>1201.70<br /> </td> <td>348.78<br /> </td> <td>[<1 1 0 -3 2|, <0 2 8 20 5|]<br /> </td> <td>6.10<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/31edo">31</a>, (62), (93e), 100de, (124be)...<br /> </td> </tr> </table> The TOP tunings of mohajira and migration are not merely close, but exactly equal, because the prime 7 does not affect the TOP tuning. The two temperaments intersect in <a class="wiki_link" href="/31edo">31edo</a>, which is also near-optimal for both.<br /> <br /> <table class="wiki_table"> <tr> <td>ET<br /> </td> <td>TOP damage<br /> </td> <td>TOP octave<br /> </td> <td>Rank-2 temperaments supported<br /> </td> </tr> <tr> <td>22<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology<br /> </td> </tr> <tr> <td>24d<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>26<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera, flattone<br /> </td> </tr> <tr> <td>27e<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene, sensis<br /> </td> </tr> <tr> <td>28de<br /> </td> <td><br /> </td> <td><br /> </td> <td>negric<br /> </td> </tr> <tr> <td>29<br /> </td> <td><br /> </td> <td><br /> </td> <td>nautilus, porky<br /> </td> </tr> <tr> <td>29cde<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>31<br /> </td> <td><br /> </td> <td><br /> </td> <td>meantone, orwell, squares, valentine, mohajira, meanpop, migration, nusecond<br /> </td> </tr> <tr> <td>31e<br /> </td> <td><br /> </td> <td><br /> </td> <td>meanenneadecal<br /> </td> </tr> <tr> <td>33cd<br /> </td> <td><br /> </td> <td><br /> </td> <td>godzilla<br /> </td> </tr> <tr> <td>34d<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>34e<br /> </td> <td><br /> </td> <td><br /> </td> <td>darjeeling<br /> </td> </tr> <tr> <td>36<br /> </td> <td><br /> </td> <td><br /> </td> <td>catcall<br /> </td> </tr> <tr> <td>36ce<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog<br /> </td> </tr> <tr> <td>36d<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>37<br /> </td> <td><br /> </td> <td><br /> </td> <td>porcupine<br /> </td> </tr> <tr> <td>38d<br /> </td> <td><br /> </td> <td><br /> </td> <td>undevigintone<br /> </td> </tr> <tr> <td>38e<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera<br /> </td> </tr> <tr> <td>39<br /> </td> <td><br /> </td> <td><br /> </td> <td>triforce<br /> </td> </tr> <tr> <td>39d<br /> </td> <td><br /> </td> <td><br /> </td> <td>quasisupra<br /> </td> </tr> <tr> <td>39dee<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene<br /> </td> </tr> <tr> <td>41<br /> </td> <td><br /> </td> <td><br /> </td> <td>magic<br /> </td> </tr> <tr> <td>41cdee<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>41e<br /> </td> <td><br /> </td> <td><br /> </td> <td>telepathy<br /> </td> </tr> <tr> <td>42e<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene<br /> </td> </tr> <tr> <td>43<br /> </td> <td><br /> </td> <td><br /> </td> <td>meantone<br /> </td> </tr> <tr> <td>44*<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology<br /> </td> </tr> <tr> <td>45<br /> </td> <td><br /> </td> <td><br /> </td> <td>flattone<br /> </td> </tr> <tr> <td>45e<br /> </td> <td><br /> </td> <td><br /> </td> <td>squares<br /> </td> </tr> <tr> <td>46<br /> </td> <td><br /> </td> <td><br /> </td> <td>valentine<br /> </td> </tr> <tr> <td>46de<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>47bc<br /> </td> <td><br /> </td> <td><br /> </td> <td>progress<br /> </td> </tr> <tr> <td>48cdd*<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>48cdde<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>48ce<br /> </td> <td><br /> </td> <td><br /> </td> <td>catcall<br /> </td> </tr> <tr> <td>49<br /> </td> <td><br /> </td> <td><br /> </td> <td>superpyth<br /> </td> </tr> <tr> <td>50<br /> </td> <td><br /> </td> <td><br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>50dee<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera<br /> </td> </tr> <tr> <td>50e<br /> </td> <td><br /> </td> <td><br /> </td> <td>meantone<br /> </td> </tr> <tr> <td>50ee<br /> </td> <td><br /> </td> <td><br /> </td> <td>meanenneadecal<br /> </td> </tr> <tr> <td>51<br /> </td> <td><br /> </td> <td><br /> </td> <td>porky<br /> </td> </tr> <tr> <td>52b<br /> </td> <td><br /> </td> <td><br /> </td> <td>porcupine<br /> </td> </tr> <tr> <td>52bdd<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog<br /> </td> </tr> <tr> <td>52c*<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera, flattone<br /> </td> </tr> <tr> <td>52cd<br /> </td> <td><br /> </td> <td><br /> </td> <td>godzilla<br /> </td> </tr> <tr> <td>53<br /> </td> <td><br /> </td> <td><br /> </td> <td>orwell<br /> </td> </tr> <tr> <td>53cddeee<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>53dee<br /> </td> <td><br /> </td> <td><br /> </td> <td>darjeeling<br /> </td> </tr> <tr> <td>54cd<br /> </td> <td><br /> </td> <td><br /> </td> <td>triforce<br /> </td> </tr> <tr> <td>54cee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene, sensis<br /> </td> </tr> <tr> <td>55de<br /> </td> <td><br /> </td> <td><br /> </td> <td>meantone<br /> </td> </tr> <tr> <td>56bddeee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>negric<br /> </td> </tr> <tr> <td>56d<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>57bce<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene<br /> </td> </tr> <tr> <td>57dd<br /> </td> <td><br /> </td> <td><br /> </td> <td>undevigintone<br /> </td> </tr> <tr> <td>57ddee<br /> </td> <td><br /> </td> <td><br /> </td> <td>undevigintone<br /> </td> </tr> <tr> <td>58cde*<br /> </td> <td><br /> </td> <td><br /> </td> <td>nautilus, porky<br /> </td> </tr> <tr> <td>58ce<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog<br /> </td> </tr> <tr> <td>58ccddee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>58ddee<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>59<br /> </td> <td><br /> </td> <td><br /> </td> <td>porcupine<br /> </td> </tr> <tr> <td>60cddd<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>60cdddee<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>61d<br /> </td> <td><br /> </td> <td><br /> </td> <td>quasisupra<br /> </td> </tr> <tr> <td>62*<br /> </td> <td><br /> </td> <td><br /> </td> <td>meantone, orwell, squares, valentine, mohajira, meanpop, migration, nusecond<br /> </td> </tr> <tr> <td>62bcce<br /> </td> <td><br /> </td> <td><br /> </td> <td>progress<br /> </td> </tr> <tr> <td>62eee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>meanenneadecal<br /> </td> </tr> <tr> <td>63<br /> </td> <td><br /> </td> <td><br /> </td> <td>magic<br /> </td> </tr> <tr> <td>63e<br /> </td> <td><br /> </td> <td><br /> </td> <td>telepathy<br /> </td> </tr> <tr> <td>64cd<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera<br /> </td> </tr> <tr> <td>64cde<br /> </td> <td><br /> </td> <td><br /> </td> <td>flattone<br /> </td> </tr> <tr> <td>65ccdddeeee<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>66bcc<br /> </td> <td><br /> </td> <td><br /> </td> <td>injera<br /> </td> </tr> <tr> <td>66bccdd*<br /> </td> <td><br /> </td> <td><br /> </td> <td>godzilla<br /> </td> </tr> <tr> <td>66d*<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog, porcupine, pajara, pajarous, telepathy, porky, suprapyth, fleetwood, astrology<br /> </td> </tr> <tr> <td>66de<br /> </td> <td><br /> </td> <td><br /> </td> <td>vigintiduo<br /> </td> </tr> <tr> <td>67b<br /> </td> <td><br /> </td> <td><br /> </td> <td>porcupine<br /> </td> </tr> <tr> <td>68dde*<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>68dee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>darjeeling<br /> </td> </tr> <tr> <td>69bcd<br /> </td> <td><br /> </td> <td><br /> </td> <td>triforce<br /> </td> </tr> <tr> <td>69bcee<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene<br /> </td> </tr> <tr> <td>69dee<br /> </td> <td><br /> </td> <td><br /> </td> <td>meanenneadecal<br /> </td> </tr> <tr> <td>70ccddeee<br /> </td> <td><br /> </td> <td><br /> </td> <td>dominant<br /> </td> </tr> <tr> <td>70ddeee<br /> </td> <td><br /> </td> <td><br /> </td> <td>pajara<br /> </td> </tr> <tr> <td>71bc<br /> </td> <td><br /> </td> <td><br /> </td> <td>flattone<br /> </td> </tr> <tr> <td>71bcdd<br /> </td> <td><br /> </td> <td><br /> </td> <td>godzilla<br /> </td> </tr> <tr> <td>71d<br /> </td> <td><br /> </td> <td><br /> </td> <td>superpyth<br /> </td> </tr> <tr> <td>72<br /> </td> <td><br /> </td> <td><br /> </td> <td>miracle<br /> </td> </tr> <tr> <td>72bce<br /> </td> <td><br /> </td> <td><br /> </td> <td>augene<br /> </td> </tr> <tr> <td>72ccddee<br /> </td> <td><br /> </td> <td><br /> </td> <td>nautilus<br /> </td> </tr> <tr> <td>72ccee*<br /> </td> <td><br /> </td> <td><br /> </td> <td>hedgehog<br /> </td> </tr> <tr> <td>72cddd*<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>72cddde*<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>72cdddeee<br /> </td> <td><br /> </td> <td><br /> </td> <td>duodecim<br /> </td> </tr> <tr> <td>72ce*<br /> </td> <td><br /> </td> <td><br /> </td> <td>catcall<br /> </td> </tr> </table> </body></html>