Prime factorization
|
2 × 52
|
Step size
|
86.0391 ¢
|
Octave
|
14\50ed12 (1204.55 ¢) (→ 7\25ed12)
|
Twelfth
|
22\50ed12 (1892.86 ¢) (→ 11\25ed12)
|
Consistency limit
|
7
|
Distinct consistency limit
|
5
|
50 equal divisions of the 12th harmonic (abbreviated 50ed12) is a nonoctave tuning system that divides the interval of 12/1 into 50 equal parts of about 86 ¢ each. Each step represents a frequency ratio of 121/50, or the 50th root of 12.
Interval table
Steps
|
Cents
|
Approximate ratios
|
0
|
0
|
1/1
|
1
|
86
|
20/19, 21/20, 22/21
|
2
|
172.1
|
21/19, 31/28, 32/29
|
3
|
258.1
|
22/19
|
4
|
344.2
|
11/9, 28/23
|
5
|
430.2
|
9/7
|
6
|
516.2
|
27/20, 31/23
|
7
|
602.3
|
17/12, 24/17
|
8
|
688.3
|
|
9
|
774.4
|
|
10
|
860.4
|
23/14, 28/17
|
11
|
946.4
|
19/11, 31/18
|
12
|
1032.5
|
20/11, 29/16
|
13
|
1118.5
|
21/11
|
14
|
1204.5
|
2/1
|
15
|
1290.6
|
19/9
|
16
|
1376.6
|
31/14
|
17
|
1462.7
|
7/3
|
18
|
1548.7
|
22/9
|
19
|
1634.7
|
18/7
|
20
|
1720.8
|
27/10
|
21
|
1806.8
|
17/6
|
22
|
1892.9
|
|
23
|
1978.9
|
22/7
|
24
|
2064.9
|
23/7
|
25
|
2151
|
|
26
|
2237
|
|
27
|
2323.1
|
23/6
|
28
|
2409.1
|
|
29
|
2495.1
|
|
30
|
2581.2
|
31/7
|
31
|
2667.2
|
14/3
|
32
|
2753.3
|
|
33
|
2839.3
|
31/6
|
34
|
2925.3
|
|
35
|
3011.4
|
|
36
|
3097.4
|
6/1
|
37
|
3183.4
|
|
38
|
3269.5
|
|
39
|
3355.5
|
|
40
|
3441.6
|
|
41
|
3527.6
|
23/3
|
42
|
3613.6
|
|
43
|
3699.7
|
17/2
|
44
|
3785.7
|
|
45
|
3871.8
|
28/3
|
46
|
3957.8
|
|
47
|
4043.8
|
31/3
|
48
|
4129.9
|
|
49
|
4215.9
|
|
50
|
4302
|
12/1
|