12L 3s (21/10-equivalent)
↖ 11L 2s⟨21/10⟩ | ↑ 12L 2s⟨21/10⟩ | 13L 2s⟨21/10⟩ ↗ |
← 11L 3s⟨21/10⟩ | 12L 3s (21/10-equivalent) | 13L 3s⟨21/10⟩ → |
↙ 11L 4s⟨21/10⟩ | ↓ 12L 4s⟨21/10⟩ | 13L 4s⟨21/10⟩ ↘ |
┌╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬┐ │║║║║│║║║║│║║║║││ │││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLsLLLLsLLLL
Generator size(ed21/10)
Related MOS scales
Equal tunings(ed21/10)
12L 3s⟨21/10⟩ is a 21/10-equivalent (non-octave) moment of symmetry scale containing 12 large steps and 3 small steps, with a period of 4 large steps and 1 small step that repeats every 428.2 ¢, or 3 times every interval of 21/10 (1284.5 ¢). Generators that produce this scale range from 85.6 ¢ to 107 ¢, or from 321.1 ¢ to 342.5 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
12|0(3) | 1 | LLLLsLLLLsLLLLs |
9|3(3) | 2 | LLLsLLLLsLLLLsL |
6|6(3) | 3 | LLsLLLLsLLLLsLL |
3|9(3) | 4 | LsLLLLsLLLLsLLL |
0|12(3) | 5 | sLLLLsLLLLsLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0 ¢ to 85.6 ¢ |
Perfect 1-mosstep | P1ms | L | 85.6 ¢ to 107.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 107.0 ¢ to 171.3 ¢ |
Major 2-mosstep | M2ms | 2L | 171.3 ¢ to 214.1 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 214.1 ¢ to 256.9 ¢ |
Major 3-mosstep | M3ms | 3L | 256.9 ¢ to 321.1 ¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 3L + s | 321.1 ¢ to 342.5 ¢ |
Augmented 4-mosstep | A4ms | 4L | 342.5 ¢ to 428.2 ¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 4L + s | 428.2 ¢ |
6-mosstep | Diminished 6-mosstep | d6ms | 4L + 2s | 428.2 ¢ to 513.8 ¢ |
Perfect 6-mosstep | P6ms | 5L + s | 513.8 ¢ to 535.2 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 535.2 ¢ to 599.4 ¢ |
Major 7-mosstep | M7ms | 6L + s | 599.4 ¢ to 642.2 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 642.2 ¢ to 685.0 ¢ |
Major 8-mosstep | M8ms | 7L + s | 685.0 ¢ to 749.3 ¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 7L + 2s | 749.3 ¢ to 770.7 ¢ |
Augmented 9-mosstep | A9ms | 8L + s | 770.7 ¢ to 856.3 ¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 8L + 2s | 856.3 ¢ |
11-mosstep | Diminished 11-mosstep | d11ms | 8L + 3s | 856.3 ¢ to 941.9 ¢ |
Perfect 11-mosstep | P11ms | 9L + 2s | 941.9 ¢ to 963.4 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 963.4 ¢ to 1027.6 ¢ |
Major 12-mosstep | M12ms | 10L + 2s | 1027.6 ¢ to 1070.4 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 10L + 3s | 1070.4 ¢ to 1113.2 ¢ |
Major 13-mosstep | M13ms | 11L + 2s | 1113.2 ¢ to 1177.4 ¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 11L + 3s | 1177.4 ¢ to 1198.8 ¢ |
Augmented 14-mosstep | A14ms | 12L + 2s | 1198.8 ¢ to 1284.5 ¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 12L + 3s | 1284.5 ¢ |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |