Graham complexity

From Xenharmonic Wiki
Revision as of 18:34, 19 July 2011 by Wikispaces>genewardsmith (**Imported revision 242008691 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-07-19 18:34:40 UTC.
The original revision id was 242008691.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //Graham complexity// of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [<2 0 11|, <0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.

Original HTML content:

<html><head><title>Graham complexity</title></head><body>The <em>Graham complexity</em> of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&lt;2 0 11|, &lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.</body></html>