Graham complexity
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-01-24 18:49:46 UTC.
- The original revision id was 295024044.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The //Graham complexity// of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [<2 0 11|, <0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6. Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. The Graham complexity of the q-limit [[chord of nature]] is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.
Original HTML content:
<html><head><title>Graham complexity</title></head><body>The <em>Graham complexity</em> of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [<2 0 11|, <0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.<br /> <br /> Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. <br /> <br /> The Graham complexity of the q-limit <a class="wiki_link" href="/chord%20of%20nature">chord of nature</a> is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.</body></html>