Gallery of Z-polygon transversals

From Xenharmonic Wiki
Revision as of 10:44, 11 September 2011 by Wikispaces>genewardsmith (**Imported revision 252810948 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-09-11 10:44:09 UTC.
The original revision id was 252810948.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]

=Z-polytopes and convex closures=
In geometry, a [[http://en.wikipedia.org/wiki/Convex_set|convex set]] is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The [[http://en.wikipedia.org/wiki/Convex_hull|convex hull]] of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A [[http://en.wikipedia.org/wiki/Convex_lattice_polytope|Z-polytope]] is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope.

If a [[Regular Temperaments|regular temperament]] of rank r+1 has no elements which are fractions of the octave, one of the generators can be taken as "2", and the octave-equivalent pitch classes form a free abelian group of rank r, which can be written as an [[http://en.wikipedia.org/wiki/Tuple|r-tuple]] of integers [a1 a2 ... ar]. A [[periodic scale]] in this regular temperament is then a finite set of such r-tuples, and the minimal Z-polytope containing this set is the convex closure of the scale. If a just intonation tuning is chosen, one where every generator is tuned as a just interval belonging to the p-limit group or subgroup the temperament maps from, then a [[transversal]] is obtained; for any tuning of the temperament, the specific notes can be obtained by mapping from the notes of the transversal. Such a transversal may be called a //Z-polytope transversal//, and in case of a [[planar temperament]], where the Z-polytope lies in a plane, a Z-polygon transversal. 

=Oblique transversals=
Sometimes a normal sort of transversal using only two odd primes cannot be found for a given planar temperament, in which case the transversal will not work with Scala's lattice drawing command. In these cases an //oblique// transversal can be given; these have completely incorrect values considered as approximations, but with a correctly chosen val or tuning map, will give correct results for the temperament tuning. Since there is no reason not to, we use 2.3.5 5-limit vals for oblique vals, and give a corresponding //valid val// which will give correct N-edo tunings for the given oblique transversal. Oblique transversals are listed with an asterisk, like Roger Maris supposedly was.

=Travsversal listings=
Below is a listing of some Z-polygon transverals and oblique transversals for various well-known scales. Reading these into Scala and using the indicated subgroup generators for the horizonal and vertical factors in the "Lattice and player" under the "Analyze" pull-down menu in Scala, lattice diagrams of the convex closure of the scales in various planar temperaments can be obtained. Tempering the transversal in whatever tuning you favor you can make use of these convex closures; in fact, for microtemperaments such as breedsmic or ragismic you can keep the just intonation tuning and consider it tempered. The Scala Temper command gives a number of options, and another tempering possibility is to use the edo with the optimal patent val. The list below therefore covers some of the same ground as [[Diaconv scales]], but without giving an explicit tempering, something which is easily accomplished inside of Scala.

=Septimal hexany=
15/14 5/4 10/7 3/2 12/7 2
[[hexany_875|keemic]]
[[hexany_245|sensamagic]]
[[hexany_126|starling]]
[[hexany_1728|orwellismic]]
[[hexany_1029|gamelismic]]
[[hexany_225|marvel]]
*[[hexany_3136|hemimean]]
[[hexany_5120|hemifamity]]
[[hexany_6144|porwell]]
[[hexany_65625|horwell]]
[[hexany_2401|breedsmic]]
[[hexany_4375|ragismic]]

=7-limit diamond=
8/7 7/6 6/5 5/4 4/3 7/5 10/7 3/2 8/5 5/3 12/7 7/4 2
[[diamond7_875|keemic]]
[[diamond7_245|sensamagic]]
[[diamond7_126|starling]]
[[diamond7_1728|orwellismic]]
[[diamond7_1029|gamelismic]]
[[diamond7_225|marvel]]
*[[diamond7_3136|hemimean]]
[[diamond7_5120|hemifamity]]
[[diamond7_6144|porwell]]
[[diamond7_65625|horwell]]
[[diamond7_2401|breedsmic]]
[[diamond7_4375|ragismic]]

=9-limit diamond=
10/9 9/8 8/7 7/6 6/5 5/4 9/7 4/3 7/5 10/7 3/2 14/9 8/5 5/3 12/7 7/4 16/9 9/5 2
[[diamond9_875|keemic]]
[[diamond9_245|sensamagic]]
[[diamond9_126|starling]]
[[diamond9_1728|orwellismic]]
[[diamond9_1029|gamelismic]]
[[diamond9_225|marvel]]
*[[diamond9_3136|hemimean]]
[[diamond9_5120|hemifamity]]
[[diamond9_6144|porwell]]
[[diamond9_65625|horwell]]
[[diamond9_2401|breedsmic]]
[[diamond9_4375|ragismic]]

=Dekatesserany (2x2x2 chord cube)=
21/20 15/14 35/32 9/8 5/4 21/16 35/24 3/2 49/32 25/16 105/64 7/4 15/8 2
[[deka875|keemic]]
[[deka245|sensamagic]]
[[deka126|starling]]
[[deka1728|orwellismic]]
[[deka1029|gamelismic]]
[[deka225|marvel]]
*[[deka3136|hemimean]]
[[deka5120|hemifamity]]
[[deka6144|porwell]]
[[deka65625|horwell]]
[[deka2401|breedsmic]]
[[deka4375|ragismic]]

=2)5 Dekany 1.3.5.7.11 (1.3 tonic)=
[[dekany_apollo|apollo]]
*[[dekany_hades|hades]]
*[[dekany_indra|indra]]
*[[dekany_jove|jove]]
[[dekany_laka|laka]]
[[dekany_marvel|marvel]]
[[dekany_minerva|minerva]]
[[dekany_pele|pele]]
[[dekany_portent|portent]]
[[dekany_prodigy|prodigy]]
*[[dekany_sensamgic|sensamagic]]
[[dekany_thrush|thrush]]
*[[dekany_zeus|zeus]]

Original HTML content:

<html><head><title>Gallery of Z-polygon transversals</title></head><body><!-- ws:start:WikiTextTocRule:16:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --><a href="#Z-polytopes and convex closures">Z-polytopes and convex closures</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Oblique transversals">Oblique transversals</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Travsversal listings">Travsversal listings</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Septimal hexany">Septimal hexany</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#x7-limit diamond">7-limit diamond</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#x9-limit diamond">9-limit diamond</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Dekatesserany (2x2x2 chord cube)">Dekatesserany (2x2x2 chord cube)</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#x2)5 Dekany 1.3.5.7.11 (1.3 tonic)">2)5 Dekany 1.3.5.7.11 (1.3 tonic)</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: -->
<!-- ws:end:WikiTextTocRule:25 --><br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Z-polytopes and convex closures"></a><!-- ws:end:WikiTextHeadingRule:0 -->Z-polytopes and convex closures</h1>
In geometry, a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow">convex set</a> is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_hull" rel="nofollow">convex hull</a> of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_lattice_polytope" rel="nofollow">Z-polytope</a> is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope.<br />
<br />
If a <a class="wiki_link" href="/Regular%20Temperaments">regular temperament</a> of rank r+1 has no elements which are fractions of the octave, one of the generators can be taken as &quot;2&quot;, and the octave-equivalent pitch classes form a free abelian group of rank r, which can be written as an <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow">r-tuple</a> of integers [a1 a2 ... ar]. A <a class="wiki_link" href="/periodic%20scale">periodic scale</a> in this regular temperament is then a finite set of such r-tuples, and the minimal Z-polytope containing this set is the convex closure of the scale. If a just intonation tuning is chosen, one where every generator is tuned as a just interval belonging to the p-limit group or subgroup the temperament maps from, then a <a class="wiki_link" href="/transversal">transversal</a> is obtained; for any tuning of the temperament, the specific notes can be obtained by mapping from the notes of the transversal. Such a transversal may be called a <em>Z-polytope transversal</em>, and in case of a <a class="wiki_link" href="/planar%20temperament">planar temperament</a>, where the Z-polytope lies in a plane, a Z-polygon transversal. <br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Oblique transversals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Oblique transversals</h1>
Sometimes a normal sort of transversal using only two odd primes cannot be found for a given planar temperament, in which case the transversal will not work with Scala's lattice drawing command. In these cases an <em>oblique</em> transversal can be given; these have completely incorrect values considered as approximations, but with a correctly chosen val or tuning map, will give correct results for the temperament tuning. Since there is no reason not to, we use 2.3.5 5-limit vals for oblique vals, and give a corresponding <em>valid val</em> which will give correct N-edo tunings for the given oblique transversal. Oblique transversals are listed with an asterisk, like Roger Maris supposedly was.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Travsversal listings"></a><!-- ws:end:WikiTextHeadingRule:4 -->Travsversal listings</h1>
Below is a listing of some Z-polygon transverals and oblique transversals for various well-known scales. Reading these into Scala and using the indicated subgroup generators for the horizonal and vertical factors in the &quot;Lattice and player&quot; under the &quot;Analyze&quot; pull-down menu in Scala, lattice diagrams of the convex closure of the scales in various planar temperaments can be obtained. Tempering the transversal in whatever tuning you favor you can make use of these convex closures; in fact, for microtemperaments such as breedsmic or ragismic you can keep the just intonation tuning and consider it tempered. The Scala Temper command gives a number of options, and another tempering possibility is to use the edo with the optimal patent val. The list below therefore covers some of the same ground as <a class="wiki_link" href="/Diaconv%20scales">Diaconv scales</a>, but without giving an explicit tempering, something which is easily accomplished inside of Scala.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Septimal hexany"></a><!-- ws:end:WikiTextHeadingRule:6 -->Septimal hexany</h1>
15/14 5/4 10/7 3/2 12/7 2<br />
<a class="wiki_link" href="/hexany_875">keemic</a><br />
<a class="wiki_link" href="/hexany_245">sensamagic</a><br />
<a class="wiki_link" href="/hexany_126">starling</a><br />
<a class="wiki_link" href="/hexany_1728">orwellismic</a><br />
<a class="wiki_link" href="/hexany_1029">gamelismic</a><br />
<a class="wiki_link" href="/hexany_225">marvel</a><br />
*<a class="wiki_link" href="/hexany_3136">hemimean</a><br />
<a class="wiki_link" href="/hexany_5120">hemifamity</a><br />
<a class="wiki_link" href="/hexany_6144">porwell</a><br />
<a class="wiki_link" href="/hexany_65625">horwell</a><br />
<a class="wiki_link" href="/hexany_2401">breedsmic</a><br />
<a class="wiki_link" href="/hexany_4375">ragismic</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="x7-limit diamond"></a><!-- ws:end:WikiTextHeadingRule:8 -->7-limit diamond</h1>
8/7 7/6 6/5 5/4 4/3 7/5 10/7 3/2 8/5 5/3 12/7 7/4 2<br />
<a class="wiki_link" href="/diamond7_875">keemic</a><br />
<a class="wiki_link" href="/diamond7_245">sensamagic</a><br />
<a class="wiki_link" href="/diamond7_126">starling</a><br />
<a class="wiki_link" href="/diamond7_1728">orwellismic</a><br />
<a class="wiki_link" href="/diamond7_1029">gamelismic</a><br />
<a class="wiki_link" href="/diamond7_225">marvel</a><br />
*<a class="wiki_link" href="/diamond7_3136">hemimean</a><br />
<a class="wiki_link" href="/diamond7_5120">hemifamity</a><br />
<a class="wiki_link" href="/diamond7_6144">porwell</a><br />
<a class="wiki_link" href="/diamond7_65625">horwell</a><br />
<a class="wiki_link" href="/diamond7_2401">breedsmic</a><br />
<a class="wiki_link" href="/diamond7_4375">ragismic</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="x9-limit diamond"></a><!-- ws:end:WikiTextHeadingRule:10 -->9-limit diamond</h1>
10/9 9/8 8/7 7/6 6/5 5/4 9/7 4/3 7/5 10/7 3/2 14/9 8/5 5/3 12/7 7/4 16/9 9/5 2<br />
<a class="wiki_link" href="/diamond9_875">keemic</a><br />
<a class="wiki_link" href="/diamond9_245">sensamagic</a><br />
<a class="wiki_link" href="/diamond9_126">starling</a><br />
<a class="wiki_link" href="/diamond9_1728">orwellismic</a><br />
<a class="wiki_link" href="/diamond9_1029">gamelismic</a><br />
<a class="wiki_link" href="/diamond9_225">marvel</a><br />
*<a class="wiki_link" href="/diamond9_3136">hemimean</a><br />
<a class="wiki_link" href="/diamond9_5120">hemifamity</a><br />
<a class="wiki_link" href="/diamond9_6144">porwell</a><br />
<a class="wiki_link" href="/diamond9_65625">horwell</a><br />
<a class="wiki_link" href="/diamond9_2401">breedsmic</a><br />
<a class="wiki_link" href="/diamond9_4375">ragismic</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Dekatesserany (2x2x2 chord cube)"></a><!-- ws:end:WikiTextHeadingRule:12 -->Dekatesserany (2x2x2 chord cube)</h1>
21/20 15/14 35/32 9/8 5/4 21/16 35/24 3/2 49/32 25/16 105/64 7/4 15/8 2<br />
<a class="wiki_link" href="/deka875">keemic</a><br />
<a class="wiki_link" href="/deka245">sensamagic</a><br />
<a class="wiki_link" href="/deka126">starling</a><br />
<a class="wiki_link" href="/deka1728">orwellismic</a><br />
<a class="wiki_link" href="/deka1029">gamelismic</a><br />
<a class="wiki_link" href="/deka225">marvel</a><br />
*<a class="wiki_link" href="/deka3136">hemimean</a><br />
<a class="wiki_link" href="/deka5120">hemifamity</a><br />
<a class="wiki_link" href="/deka6144">porwell</a><br />
<a class="wiki_link" href="/deka65625">horwell</a><br />
<a class="wiki_link" href="/deka2401">breedsmic</a><br />
<a class="wiki_link" href="/deka4375">ragismic</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="x2)5 Dekany 1.3.5.7.11 (1.3 tonic)"></a><!-- ws:end:WikiTextHeadingRule:14 -->2)5 Dekany 1.3.5.7.11 (1.3 tonic)</h1>
<a class="wiki_link" href="/dekany_apollo">apollo</a><br />
*<a class="wiki_link" href="/dekany_hades">hades</a><br />
*<a class="wiki_link" href="/dekany_indra">indra</a><br />
*<a class="wiki_link" href="/dekany_jove">jove</a><br />
<a class="wiki_link" href="/dekany_laka">laka</a><br />
<a class="wiki_link" href="/dekany_marvel">marvel</a><br />
<a class="wiki_link" href="/dekany_minerva">minerva</a><br />
<a class="wiki_link" href="/dekany_pele">pele</a><br />
<a class="wiki_link" href="/dekany_portent">portent</a><br />
<a class="wiki_link" href="/dekany_prodigy">prodigy</a><br />
*<a class="wiki_link" href="/dekany_sensamgic">sensamagic</a><br />
<a class="wiki_link" href="/dekany_thrush">thrush</a><br />
*<a class="wiki_link" href="/dekany_zeus">zeus</a></body></html>