402edo

Revision as of 12:31, 15 April 2024 by FloraC (talk | contribs) (Review)
← 401edo 402edo 403edo →
Prime factorization 2 × 3 × 67
Step size 2.98507 ¢ 
Fifth 235\402 (701.493 ¢)
Semitones (A1:m2) 37:31 (110.4 ¢ : 92.54 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

402edo is only consistent to the 5-odd-limit. There are three possible mappings in the 7-limit:

  • 402 637 933 1129] (patent val)
  • 402 637 933 1128] (402d)
  • 402 637 934 1129] (402c)

Using the patent val, it tempers out 4375/4374, 7381125/7340032 and 3200000/3176523 in the 7-limit. It supports ragismic and abigail.

Using the 402d val, it tempers out 250047/250000, 1500625/1492992 and 2460375/2458624 in the 7-limit. It supports the landscape temperament.

Using the 402c val, it tempers out 3136/3125, 321489/320000 and 13060694016/12867859375 in the 7-limit. It supports bischismic and parahemwuer.

Odd harmonics

Approximation of odd harmonics in 402edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.46 -1.24 +1.32 -0.92 +0.92 +1.26 +1.28 -0.48 +0.99 +0.86 -1.41
Relative (%) -15.5 -41.5 +44.3 -31.0 +30.8 +42.3 +43.0 -16.0 +33.3 +28.8 -47.2
Steps
(reduced)
637
(235)
933
(129)
1129
(325)
1274
(68)
1391
(185)
1488
(282)
1571
(365)
1643
(35)
1708
(100)
1766
(158)
1818
(210)

Subsets and supersets

Since 402 factors into 2 × 3 × 67, 402edo has subset edos 2, 3, 6, 67, 134, and 201. 804edo, which doubles it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-637 402 [402 637]] 0.1459 0.1459 4.89
2.3.5 2109375/2097152, [25 -48 22 [402 637 933]] 0.2752 0.2182 7.31

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 91\402 271.64 75/64 Orson
1 115\402 343.28 8000/6561 Raider

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct