Catakleismic/11-limit chords
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-29 02:56:40 UTC.
- The original revision id was 288714062.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Kleismic family#Catakleismic|catakleismic temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are labeled swetismic, by 385/384 keenanismic, and by 225/224 marvel. Chords requiring any two of 540/539, 385/384 or 225/224 are labeled unimarvel. Catakleismic has MOS of size 7, 11, 15, 19, 34, 53 and 72. It is a complex temperament and not much attention has been paid to it, but one notable feature it has is that 11-limit marvel (unimarvel) shrinks the kleisma to a very small interval in an optimal tuning, so very little tuning damage is incurred by catakleismic over that of marvel. Hence, catakleismic can be thought of as one way of organizing the chords of marvel, which are also listed below. =Triads= || Number || Chord || Transversal || Type || || 1 || 0-1-6 || 1-6/5-3/2 || utonal || || 2 || 0-5-6 || 1-5/4-3/2 || otonal || || 3 || 0-1-7 || 1-6/5-9/5 || otonal || || 4 || 0-6-7 || 1-3/2-9/5 || utonal || || 5 || 0-5-10 || 1-5/4-14/9 || marvel || || 6 || 0-5-12 || 1-5/4-9/8 || otonal || || 7 || 0-6-12 || 1-3/2-9/8 || ambitonal || || 8 || 0-7-12 || 1-9/5-9/8 || utonal || || 9 || 0-6-16 || 1-3/2-7/6 || otonal || || 10 || 0-10-16 || 1-14/9-7/6 || utonal || || 11 || 0-1-17 || 1-6/5-7/5 || otonal || || 12 || 0-5-17 || 1-5/4-7/5 || marvel || || 13 || 0-7-17 || 1-9/5-7/5 || otonal || || 14 || 0-10-17 || 1-14/9-7/5 || utonal || || 15 || 0-12-17 || 1-9/8-7/5 || marvel || || 16 || 0-16-17 || 1-7/6-7/5 || utonal || || 17 || 0-5-21 || 1-5/4-16/11 || keenanismic || || 18 || 0-16-21 || 1-7/6-16/11 || keenanismic || || 19 || 0-1-22 || 1-6/5-7/4 || keenanismic || || 20 || 0-5-22 || 1-5/4-7/4 || otonal || || 21 || 0-6-22 || 1-3/2-7/4 || otonal || || 22 || 0-10-22 || 1-14/9-7/4 || utonal || || 23 || 0-12-22 || 1-9/8-7/4 || otonal || || 24 || 0-16-22 || 1-7/6-7/4 || utonal || || 25 || 0-17-22 || 1-7/5-7/4 || utonal || || 26 || 0-21-22 || 1-16/11-7/4 || keenanismic || || 27 || 0-5-26 || 1-5/4-20/11 || utonal || || 28 || 0-10-26 || 1-14/9-20/11 || swetismic || || 29 || 0-16-26 || 1-7/6-20/11 || swetismic || || 30 || 0-21-26 || 1-16/11-20/11 || otonal || || 31 || 0-1-27 || 1-6/5-12/11 || utonal || || 32 || 0-5-27 || 1-5/4-12/11 || keenanismic || || 33 || 0-6-27 || 1-3/2-12/11 || utonal || || 34 || 0-10-27 || 1-14/9-12/11 || swetismic || || 35 || 0-17-27 || 1-7/5-12/11 || swetismic || || 36 || 0-21-27 || 1-16/11-12/11 || otonal || || 37 || 0-22-27 || 1-7/4-12/11 || keenanismic || || 38 || 0-26-27 || 1-20/11-12/11 || otonal || || 39 || 0-6-33 || 1-3/2-18/11 || utonal || || 40 || 0-7-33 || 1-9/5-18/11 || utonal || || 41 || 0-12-33 || 1-9/8-18/11 || utonal || || 42 || 0-16-33 || 1-7/6-18/11 || swetismic || || 43 || 0-17-33 || 1-7/5-18/11 || swetismic || || 44 || 0-21-33 || 1-16/11-18/11 || otonal || || 45 || 0-26-33 || 1-20/11-18/11 || otonal || || 46 || 0-27-33 || 1-12/11-18/11 || otonal || || 47 || 0-10-43 || 1-14/9-14/11 || utonal || || 48 || 0-16-43 || 1-7/6-14/11 || utonal || || 49 || 0-17-43 || 1-7/5-14/11 || utonal || || 50 || 0-21-43 || 1-16/11-14/11 || otonal || || 51 || 0-22-43 || 1-7/4-14/11 || utonal || || 52 || 0-26-43 || 1-20/11-14/11 || otonal || || 53 || 0-27-43 || 1-12/11-14/11 || otonal || || 54 || 0-33-43 || 1-18/11-14/11 || otonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-1-6-7 || 1-6/5-3/2-9/5 || ambitonal || || 2 || 0-5-6-12 || 1-5/4-3/2-9/8 || otonal || || 3 || 0-6-7-12 || 1-3/2-9/5-9/8 || utonal || || 4 || 0-1-7-17 || 1-6/5-9/5-7/5 || otonal || || 5 || 0-5-10-17 || 1-5/4-14/9-7/5 || marvel || || 6 || 0-5-12-17 || 1-5/4-9/8-7/5 || marvel || || 7 || 0-7-12-17 || 1-9/5-9/8-7/5 || marvel || || 8 || 0-10-16-17 || 1-14/9-7/6-7/5 || utonal || || 9 || 0-1-6-22 || 1-6/5-3/2-7/4 || keenanismic || || 10 || 0-5-6-22 || 1-5/4-3/2-7/4 || otonal || || 11 || 0-5-10-22 || 1-5/4-14/9-7/4 || marvel || || 12 || 0-5-12-22 || 1-5/4-9/8-7/4 || otonal || || 13 || 0-6-12-22 || 1-3/2-9/8-7/4 || otonal || || 14 || 0-6-16-22 || 1-3/2-7/6-7/4 || ambitonal || || 15 || 0-10-16-22 || 1-14/9-7/6-7/4 || utonal || || 16 || 0-1-17-22 || 1-6/5-7/5-7/4 || keenanismic || || 17 || 0-5-17-22 || 1-5/4-7/5-7/4 || marvel || || 18 || 0-10-17-22 || 1-14/9-7/5-7/4 || utonal || || 19 || 0-12-17-22 || 1-9/8-7/5-7/4 || marvel || || 20 || 0-16-17-22 || 1-7/6-7/5-7/4 || utonal || || 21 || 0-5-21-22 || 1-5/4-16/11-7/4 || keenanismic || || 22 || 0-16-21-22 || 1-7/6-16/11-7/4 || keenanismic || || 23 || 0-5-10-26 || 1-5/4-14/9-20/11 || unimarv || || 24 || 0-10-16-26 || 1-14/9-7/6-20/11 || swetismic || || 25 || 0-5-21-26 || 1-5/4-16/11-20/11 || keenanismic || || 26 || 0-16-21-26 || 1-7/6-16/11-20/11 || unimarv || || 27 || 0-1-6-27 || 1-6/5-3/2-12/11 || utonal || || 28 || 0-5-6-27 || 1-5/4-3/2-12/11 || keenanismic || || 29 || 0-5-10-27 || 1-5/4-14/9-12/11 || unimarv || || 30 || 0-1-17-27 || 1-6/5-7/5-12/11 || swetismic || || 31 || 0-5-17-27 || 1-5/4-7/5-12/11 || unimarv || || 32 || 0-10-17-27 || 1-14/9-7/5-12/11 || swetismic || || 33 || 0-5-21-27 || 1-5/4-16/11-12/11 || keenanismic || || 34 || 0-1-22-27 || 1-6/5-7/4-12/11 || keenanismic || || 35 || 0-5-22-27 || 1-5/4-7/4-12/11 || keenanismic || || 36 || 0-6-22-27 || 1-3/2-7/4-12/11 || keenanismic || || 37 || 0-10-22-27 || 1-14/9-7/4-12/11 || unimarv || || 38 || 0-17-22-27 || 1-7/5-7/4-12/11 || unimarv || || 39 || 0-21-22-27 || 1-16/11-7/4-12/11 || keenanismic || || 40 || 0-5-26-27 || 1-5/4-20/11-12/11 || keenanismic || || 41 || 0-10-26-27 || 1-14/9-20/11-12/11 || swetismic || || 42 || 0-21-26-27 || 1-16/11-20/11-12/11 || otonal || || 43 || 0-6-7-33 || 1-3/2-9/5-18/11 || utonal || || 44 || 0-6-12-33 || 1-3/2-9/8-18/11 || utonal || || 45 || 0-7-12-33 || 1-9/5-9/8-18/11 || utonal || || 46 || 0-6-16-33 || 1-3/2-7/6-18/11 || swetismic || || 47 || 0-7-17-33 || 1-9/5-7/5-18/11 || swetismic || || 48 || 0-12-17-33 || 1-9/8-7/5-18/11 || unimarv || || 49 || 0-16-17-33 || 1-7/6-7/5-18/11 || swetismic || || 50 || 0-16-21-33 || 1-7/6-16/11-18/11 || unimarv || || 51 || 0-16-26-33 || 1-7/6-20/11-18/11 || swetismic || || 52 || 0-21-26-33 || 1-16/11-20/11-18/11 || otonal || || 53 || 0-6-27-33 || 1-3/2-12/11-18/11 || ambitonal || || 54 || 0-17-27-33 || 1-7/5-12/11-18/11 || swetismic || || 55 || 0-21-27-33 || 1-16/11-12/11-18/11 || otonal || || 56 || 0-26-27-33 || 1-20/11-12/11-18/11 || otonal || || 57 || 0-10-16-43 || 1-14/9-7/6-14/11 || utonal || || 58 || 0-10-17-43 || 1-14/9-7/5-14/11 || utonal || || 59 || 0-16-17-43 || 1-7/6-7/5-14/11 || utonal || || 60 || 0-16-21-43 || 1-7/6-16/11-14/11 || keenanismic || || 61 || 0-10-22-43 || 1-14/9-7/4-14/11 || utonal || || 62 || 0-16-22-43 || 1-7/6-7/4-14/11 || utonal || || 63 || 0-17-22-43 || 1-7/5-7/4-14/11 || utonal || || 64 || 0-21-22-43 || 1-16/11-7/4-14/11 || keenanismic || || 65 || 0-10-26-43 || 1-14/9-20/11-14/11 || swetismic || || 66 || 0-16-26-43 || 1-7/6-20/11-14/11 || swetismic || || 67 || 0-21-26-43 || 1-16/11-20/11-14/11 || otonal || || 68 || 0-10-27-43 || 1-14/9-12/11-14/11 || swetismic || || 69 || 0-17-27-43 || 1-7/5-12/11-14/11 || swetismic || || 70 || 0-21-27-43 || 1-16/11-12/11-14/11 || otonal || || 71 || 0-22-27-43 || 1-7/4-12/11-14/11 || keenanismic || || 72 || 0-26-27-43 || 1-20/11-12/11-14/11 || otonal || || 73 || 0-16-33-43 || 1-7/6-18/11-14/11 || swetismic || || 74 || 0-17-33-43 || 1-7/5-18/11-14/11 || swetismic || || 75 || 0-21-33-43 || 1-16/11-18/11-14/11 || otonal || || 76 || 0-26-33-43 || 1-20/11-18/11-14/11 || otonal || || 77 || 0-27-33-43 || 1-12/11-18/11-14/11 || otonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-5-6-12-22 || 1-5/4-3/2-9/8-7/4 || otonal || || 2 || 0-5-10-17-22 || 1-5/4-14/9-7/5-7/4 || marvel || || 3 || 0-5-12-17-22 || 1-5/4-9/8-7/5-7/4 || marvel || || 4 || 0-10-16-17-22 || 1-14/9-7/6-7/5-7/4 || utonal || || 5 || 0-5-10-17-27 || 1-5/4-14/9-7/5-12/11 || unimarv || || 6 || 0-1-6-22-27 || 1-6/5-3/2-7/4-12/11 || keenanismic || || 7 || 0-5-6-22-27 || 1-5/4-3/2-7/4-12/11 || keenanismic || || 8 || 0-5-10-22-27 || 1-5/4-14/9-7/4-12/11 || unimarv || || 9 || 0-1-17-22-27 || 1-6/5-7/5-7/4-12/11 || unimarv || || 10 || 0-5-17-22-27 || 1-5/4-7/5-7/4-12/11 || unimarv || || 11 || 0-10-17-22-27 || 1-14/9-7/5-7/4-12/11 || unimarv || || 12 || 0-5-21-22-27 || 1-5/4-16/11-7/4-12/11 || keenanismic || || 13 || 0-5-10-26-27 || 1-5/4-14/9-20/11-12/11 || unimarv || || 14 || 0-5-21-26-27 || 1-5/4-16/11-20/11-12/11 || keenanismic || || 15 || 0-6-7-12-33 || 1-3/2-9/5-9/8-18/11 || utonal || || 16 || 0-7-12-17-33 || 1-9/5-9/8-7/5-18/11 || unimarv || || 17 || 0-16-21-26-33 || 1-7/6-16/11-20/11-18/11 || unimarv || || 18 || 0-21-26-27-33 || 1-16/11-20/11-12/11-18/11 || otonal || || 19 || 0-10-16-17-43 || 1-14/9-7/6-7/5-14/11 || utonal || || 20 || 0-10-16-22-43 || 1-14/9-7/6-7/4-14/11 || utonal || || 21 || 0-10-17-22-43 || 1-14/9-7/5-7/4-14/11 || utonal || || 22 || 0-16-17-22-43 || 1-7/6-7/5-7/4-14/11 || utonal || || 23 || 0-16-21-22-43 || 1-7/6-16/11-7/4-14/11 || keenanismic || || 24 || 0-10-16-26-43 || 1-14/9-7/6-20/11-14/11 || swetismic || || 25 || 0-16-21-26-43 || 1-7/6-16/11-20/11-14/11 || unimarv || || 26 || 0-10-17-27-43 || 1-14/9-7/5-12/11-14/11 || swetismic || || 27 || 0-10-22-27-43 || 1-14/9-7/4-12/11-14/11 || unimarv || || 28 || 0-17-22-27-43 || 1-7/5-7/4-12/11-14/11 || unimarv || || 29 || 0-21-22-27-43 || 1-16/11-7/4-12/11-14/11 || keenanismic || || 30 || 0-10-26-27-43 || 1-14/9-20/11-12/11-14/11 || swetismic || || 31 || 0-21-26-27-43 || 1-16/11-20/11-12/11-14/11 || otonal || || 32 || 0-16-17-33-43 || 1-7/6-7/5-18/11-14/11 || swetismic || || 33 || 0-16-21-33-43 || 1-7/6-16/11-18/11-14/11 || unimarv || || 34 || 0-16-26-33-43 || 1-7/6-20/11-18/11-14/11 || swetismic || || 35 || 0-21-26-33-43 || 1-16/11-20/11-18/11-14/11 || otonal || || 36 || 0-17-27-33-43 || 1-7/5-12/11-18/11-14/11 || swetismic || || 37 || 0-21-27-33-43 || 1-16/11-12/11-18/11-14/11 || otonal || || 38 || 0-26-27-33-43 || 1-20/11-12/11-18/11-14/11 || otonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-5-10-17-22-27 || 1-5/4-14/9-7/5-7/4-12/11 || unimarv || || 2 || 0-10-16-17-22-43 || 1-14/9-7/6-7/5-7/4-14/11 || utonal || || 3 || 0-10-17-22-27-43 || 1-14/9-7/5-7/4-12/11-14/11 || unimarv || || 4 || 0-16-21-26-33-43 || 1-7/6-16/11-20/11-18/11-14/11 || unimarv || || 5 || 0-21-26-27-33-43 || 1-16/11-20/11-12/11-18/11-14/11 || otonal ||
Original HTML content:
<html><head><title>Chords of catakleismic</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Kleismic%20family#Catakleismic">catakleismic temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are labeled swetismic, by 385/384 keenanismic, and by 225/224 marvel. Chords requiring any two of 540/539, 385/384 or 225/224 are labeled unimarvel.<br /> <br /> Catakleismic has MOS of size 7, 11, 15, 19, 34, 53 and 72. It is a complex temperament and not much attention has been paid to it, but one notable feature it has is that 11-limit marvel (unimarvel) shrinks the kleisma to a very small interval in an optimal tuning, so very little tuning damage is incurred by catakleismic over that of marvel. Hence, catakleismic can be thought of as one way of organizing the chords of marvel, which are also listed below.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-6<br /> </td> <td>1-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-5-6<br /> </td> <td>1-5/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-7<br /> </td> <td>1-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-6-7<br /> </td> <td>1-3/2-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-5-10<br /> </td> <td>1-5/4-14/9<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-5-12<br /> </td> <td>1-5/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-6-12<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-7-12<br /> </td> <td>1-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-6-16<br /> </td> <td>1-3/2-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-10-16<br /> </td> <td>1-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-1-17<br /> </td> <td>1-6/5-7/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-5-17<br /> </td> <td>1-5/4-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-7-17<br /> </td> <td>1-9/5-7/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-10-17<br /> </td> <td>1-14/9-7/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-12-17<br /> </td> <td>1-9/8-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-16-17<br /> </td> <td>1-7/6-7/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-21<br /> </td> <td>1-5/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-16-21<br /> </td> <td>1-7/6-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-1-22<br /> </td> <td>1-6/5-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-5-22<br /> </td> <td>1-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-6-22<br /> </td> <td>1-3/2-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-10-22<br /> </td> <td>1-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-12-22<br /> </td> <td>1-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-16-22<br /> </td> <td>1-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-17-22<br /> </td> <td>1-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-21-22<br /> </td> <td>1-16/11-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-5-26<br /> </td> <td>1-5/4-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-10-26<br /> </td> <td>1-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-16-26<br /> </td> <td>1-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-21-26<br /> </td> <td>1-16/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-1-27<br /> </td> <td>1-6/5-12/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-5-27<br /> </td> <td>1-5/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-6-27<br /> </td> <td>1-3/2-12/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-10-27<br /> </td> <td>1-14/9-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-17-27<br /> </td> <td>1-7/5-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-21-27<br /> </td> <td>1-16/11-12/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-22-27<br /> </td> <td>1-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-26-27<br /> </td> <td>1-20/11-12/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-6-33<br /> </td> <td>1-3/2-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-7-33<br /> </td> <td>1-9/5-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-12-33<br /> </td> <td>1-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-16-33<br /> </td> <td>1-7/6-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-17-33<br /> </td> <td>1-7/5-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-21-33<br /> </td> <td>1-16/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-26-33<br /> </td> <td>1-20/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-27-33<br /> </td> <td>1-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-10-43<br /> </td> <td>1-14/9-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-16-43<br /> </td> <td>1-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-17-43<br /> </td> <td>1-7/5-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-21-43<br /> </td> <td>1-16/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-22-43<br /> </td> <td>1-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-26-43<br /> </td> <td>1-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-27-43<br /> </td> <td>1-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-33-43<br /> </td> <td>1-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-6-7<br /> </td> <td>1-6/5-3/2-9/5<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-5-6-12<br /> </td> <td>1-5/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-6-7-12<br /> </td> <td>1-3/2-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-7-17<br /> </td> <td>1-6/5-9/5-7/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-5-10-17<br /> </td> <td>1-5/4-14/9-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-5-12-17<br /> </td> <td>1-5/4-9/8-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-7-12-17<br /> </td> <td>1-9/5-9/8-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-10-16-17<br /> </td> <td>1-14/9-7/6-7/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-6-22<br /> </td> <td>1-6/5-3/2-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-5-6-22<br /> </td> <td>1-5/4-3/2-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-5-10-22<br /> </td> <td>1-5/4-14/9-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-5-12-22<br /> </td> <td>1-5/4-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-6-12-22<br /> </td> <td>1-3/2-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-6-16-22<br /> </td> <td>1-3/2-7/6-7/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-10-16-22<br /> </td> <td>1-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-1-17-22<br /> </td> <td>1-6/5-7/5-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-17-22<br /> </td> <td>1-5/4-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-10-17-22<br /> </td> <td>1-14/9-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-12-17-22<br /> </td> <td>1-9/8-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-16-17-22<br /> </td> <td>1-7/6-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-5-21-22<br /> </td> <td>1-5/4-16/11-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-16-21-22<br /> </td> <td>1-7/6-16/11-7/4<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-5-10-26<br /> </td> <td>1-5/4-14/9-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-10-16-26<br /> </td> <td>1-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-5-21-26<br /> </td> <td>1-5/4-16/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-16-21-26<br /> </td> <td>1-7/6-16/11-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-1-6-27<br /> </td> <td>1-6/5-3/2-12/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-5-6-27<br /> </td> <td>1-5/4-3/2-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-5-10-27<br /> </td> <td>1-5/4-14/9-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-1-17-27<br /> </td> <td>1-6/5-7/5-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-5-17-27<br /> </td> <td>1-5/4-7/5-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-10-17-27<br /> </td> <td>1-14/9-7/5-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-5-21-27<br /> </td> <td>1-5/4-16/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-1-22-27<br /> </td> <td>1-6/5-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-5-22-27<br /> </td> <td>1-5/4-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-6-22-27<br /> </td> <td>1-3/2-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-10-22-27<br /> </td> <td>1-14/9-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-17-22-27<br /> </td> <td>1-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-21-22-27<br /> </td> <td>1-16/11-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-5-26-27<br /> </td> <td>1-5/4-20/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-10-26-27<br /> </td> <td>1-14/9-20/11-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-21-26-27<br /> </td> <td>1-16/11-20/11-12/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-6-7-33<br /> </td> <td>1-3/2-9/5-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-6-12-33<br /> </td> <td>1-3/2-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-7-12-33<br /> </td> <td>1-9/5-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-6-16-33<br /> </td> <td>1-3/2-7/6-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-7-17-33<br /> </td> <td>1-9/5-7/5-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-12-17-33<br /> </td> <td>1-9/8-7/5-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-16-17-33<br /> </td> <td>1-7/6-7/5-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-16-21-33<br /> </td> <td>1-7/6-16/11-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-16-26-33<br /> </td> <td>1-7/6-20/11-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-21-26-33<br /> </td> <td>1-16/11-20/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-6-27-33<br /> </td> <td>1-3/2-12/11-18/11<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-17-27-33<br /> </td> <td>1-7/5-12/11-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-21-27-33<br /> </td> <td>1-16/11-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-26-27-33<br /> </td> <td>1-20/11-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-10-16-43<br /> </td> <td>1-14/9-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-10-17-43<br /> </td> <td>1-14/9-7/5-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-16-17-43<br /> </td> <td>1-7/6-7/5-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-16-21-43<br /> </td> <td>1-7/6-16/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-10-22-43<br /> </td> <td>1-14/9-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-16-22-43<br /> </td> <td>1-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-17-22-43<br /> </td> <td>1-7/5-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-21-22-43<br /> </td> <td>1-16/11-7/4-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-10-26-43<br /> </td> <td>1-14/9-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-16-26-43<br /> </td> <td>1-7/6-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>67<br /> </td> <td>0-21-26-43<br /> </td> <td>1-16/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>68<br /> </td> <td>0-10-27-43<br /> </td> <td>1-14/9-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>69<br /> </td> <td>0-17-27-43<br /> </td> <td>1-7/5-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>70<br /> </td> <td>0-21-27-43<br /> </td> <td>1-16/11-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>71<br /> </td> <td>0-22-27-43<br /> </td> <td>1-7/4-12/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>72<br /> </td> <td>0-26-27-43<br /> </td> <td>1-20/11-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>73<br /> </td> <td>0-16-33-43<br /> </td> <td>1-7/6-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>74<br /> </td> <td>0-17-33-43<br /> </td> <td>1-7/5-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>75<br /> </td> <td>0-21-33-43<br /> </td> <td>1-16/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>76<br /> </td> <td>0-26-33-43<br /> </td> <td>1-20/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>77<br /> </td> <td>0-27-33-43<br /> </td> <td>1-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-5-6-12-22<br /> </td> <td>1-5/4-3/2-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-5-10-17-22<br /> </td> <td>1-5/4-14/9-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-5-12-17-22<br /> </td> <td>1-5/4-9/8-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-10-16-17-22<br /> </td> <td>1-14/9-7/6-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-5-10-17-27<br /> </td> <td>1-5/4-14/9-7/5-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-1-6-22-27<br /> </td> <td>1-6/5-3/2-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-5-6-22-27<br /> </td> <td>1-5/4-3/2-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-5-10-22-27<br /> </td> <td>1-5/4-14/9-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-17-22-27<br /> </td> <td>1-6/5-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-5-17-22-27<br /> </td> <td>1-5/4-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-10-17-22-27<br /> </td> <td>1-14/9-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-5-21-22-27<br /> </td> <td>1-5/4-16/11-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-5-10-26-27<br /> </td> <td>1-5/4-14/9-20/11-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-5-21-26-27<br /> </td> <td>1-5/4-16/11-20/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-6-7-12-33<br /> </td> <td>1-3/2-9/5-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-7-12-17-33<br /> </td> <td>1-9/5-9/8-7/5-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-16-21-26-33<br /> </td> <td>1-7/6-16/11-20/11-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-21-26-27-33<br /> </td> <td>1-16/11-20/11-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-10-16-17-43<br /> </td> <td>1-14/9-7/6-7/5-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-10-16-22-43<br /> </td> <td>1-14/9-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-10-17-22-43<br /> </td> <td>1-14/9-7/5-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-16-17-22-43<br /> </td> <td>1-7/6-7/5-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-16-21-22-43<br /> </td> <td>1-7/6-16/11-7/4-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-10-16-26-43<br /> </td> <td>1-14/9-7/6-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-16-21-26-43<br /> </td> <td>1-7/6-16/11-20/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-10-17-27-43<br /> </td> <td>1-14/9-7/5-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-10-22-27-43<br /> </td> <td>1-14/9-7/4-12/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-17-22-27-43<br /> </td> <td>1-7/5-7/4-12/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-21-22-27-43<br /> </td> <td>1-16/11-7/4-12/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-10-26-27-43<br /> </td> <td>1-14/9-20/11-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-21-26-27-43<br /> </td> <td>1-16/11-20/11-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-16-17-33-43<br /> </td> <td>1-7/6-7/5-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-16-21-33-43<br /> </td> <td>1-7/6-16/11-18/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-16-26-33-43<br /> </td> <td>1-7/6-20/11-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-21-26-33-43<br /> </td> <td>1-16/11-20/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-17-27-33-43<br /> </td> <td>1-7/5-12/11-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-21-27-33-43<br /> </td> <td>1-16/11-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-26-27-33-43<br /> </td> <td>1-20/11-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-5-10-17-22-27<br /> </td> <td>1-5/4-14/9-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-10-16-17-22-43<br /> </td> <td>1-14/9-7/6-7/5-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-10-17-22-27-43<br /> </td> <td>1-14/9-7/5-7/4-12/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-16-21-26-33-43<br /> </td> <td>1-7/6-16/11-20/11-18/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-21-26-27-33-43<br /> </td> <td>1-16/11-20/11-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> </body></html>