482edo
Theory
482edo has good approximations of harmonics 3, 5, 7, 17, 31, and 37. 11 and 13 have rather large errors, but they are reasonable to work with.
In the 7-limit, 482edo provides excellent tuning for the tertiaseptal temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.12 | -0.42 | -0.36 | -1.11 | +0.97 | -0.39 | +1.24 | -0.89 | +1.13 | +0.19 |
Relative (%) | +0.0 | +4.8 | -16.9 | -14.5 | -44.6 | +38.8 | -15.7 | +49.9 | -35.7 | +45.3 | +7.7 | |
Steps (reduced) |
482 (0) |
764 (282) |
1119 (155) |
1353 (389) |
1667 (221) |
1784 (338) |
1970 (42) |
2048 (120) |
2180 (252) |
2342 (414) |
2388 (460) |
Subsets and supersets
Since 482 factors into 2 × 241, 482edo contains 2edo and 241edo as subsets.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [24 -21 4⟩, [-59 5 22⟩ | [⟨482 764 1119]] | +0.0353 | 0.0587 | 4.33 |
2.3.5.7 | 2401/2400, 65625/65536, [8 -20 9 1⟩ | [⟨482 764 1119 1353]] | +0.0587 | 0.1018 | 4.09 |
2.3.5.7.11 | 2401/2400, 9801/9800, 19712/19683, 65625/65536 | [⟨482 764 1119 1353 1667]] | +0.1111 | 0.1389 | 5.58 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 | [⟨482 764 1119 1353 1667 1783]] (482f) | +0.1612 | 0.1692 | 6.80 |
2.3.5.7.11.13 | 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 | [⟨482 764 1119 1353 1667 1784]] (482) | +0.0491 | 0.1880 | 7.55 |