Catalog of 7-limit rank-2 temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-02-05 14:04:09 UTC.
- The original revision id was 298608168.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below is a **complete** listing of all 179 7-limit rank-two temperaments with TE complexity less than 20 and TE badness less than 0.06, obtained by the method discussed [[The wedgie|here]]. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "Junk" temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity. =Temperament list= || Name || Complexity || Error || Badness || Wedgie || Mapping || Commas || || dicot || .818 || 35.781 || 19.935 || <<2 1 3 -3 -1 4]] || [<1 1 2 2|, <0 2 1 3]] || 15/14 25/24 || || mother || .835 || 41.553 || 24.152 || <<1 -1 -2 -4 -6 -2]] || [<1 0 4 6|, <0 1 -1 -2]] || 16/15 21/20 || || minos || .859 || 86.798 || 53.389 || <<1 2 4 1 4 4]] || [<1 0 -1 -4|, <0 1 2 4]] || 10/9 28/25 || || geryon || .863 || 82.117 || 51.009 || <<2 1 0 -3 -6 -3]] || [<1 1 2 3|, <0 2 1 0]] || 8/7 25/21 || || antaeus || .887 || 57.236 || 37.537 || <<0 2 -2 3 -3 -10]] || [<2 3 0 10|, <0 0 1 -1]] || 9/8 35/32 || || beep || .917 || 26.605 || 18.638 || <<2 3 1 0 -4 -6]] || [<1 0 0 2|, <0 2 3 1]] || 21/20 27/25 || || father || .954 || 28.092 || 21.312 || <<1 -1 3 -4 2 10]] || [<1 0 4 -2|, <0 1 -1 3]] || 16/15 28/27 || || flat || .969 || 32.444 || 25.381 || <<2 1 -1 -3 -7 -5]] || [<1 1 2 3|, <0 2 1 -1]] || 21/20 25/24 || || quad || .979 || 57.541 || 45.991 || <<0 0 4 0 6 9]] || [<4 6 9 0] [0 0 0 1]] || 9/8 25/24 || || phlegyas || .991 || 62.667 || 51.293 || <<1 2 -2 1 -6 -10]] || [<1 0 -1 6|, <0 1 2 -2]] || 10/9 35/32 || || malacoda || .997 || 44.954 || 37.207 || <<2 -1 1 -6 -4 5]] || [<1 0 3 2|, <0 2 -1 1]] || 15/14 35/32 || || sharptone || 1.022 || 28.544 ||24.848 || <<1 4 3 4 2 -4]] || [<1 0 -4 -2|, <0 1 4 3]] || 21/20 28/27 || || ugolino || 1.068 || 46.01 || 43.758 || <<2 3 5 0 2 3]] || [<1 0 0 -1|, <0 2 3 5]] || 15/14 27/25 || || charon || 1.082 || 57.767 || 56.404 || <<2 4 4 2 1 -2]] || [<2 0 -2 -1|, <0 1 2 2]] || 10/9 49/45 || || nessus || 1.133 || 55.258 || 59.07 || <<2 4 1 2 -4 -9]] || [<1 0 -1 2|, <0 2 4 1]] || 10/9 49/48 || || penta || 1.163 || 41.597 || 46.882 || <<3 2 4 -4 -2 4]] || [<1 1 2 2|, <0 3 2 4]] || 28/25 36/35 || || medusa || 1.182 || 36.664 || 42.712 || <<1 -3 -2 -7 -6 4]] || [<1 0 7 6|, <0 1 -3 -2]] || 15/14 64/63 || || plutus || 1.224 || 36.293 || 45.275 || <<1 4 5 4 5 0]] || [<1 0 -4 -5|, <0 1 4 5]] || 15/14 81/80 || || || 1.241 || 43.494 || 55.814 || <<2 5 3 3 -1 -7]] || [<1 1 1 2|, <0 2 5 3]] || 21/20 54/49 || || || 1.257 || 41.576 || 54.77 || <<2 3 6 0 4 6]] || [<1 0 0 -2|, <0 2 3 6]] || 27/25 28/25 || || baba || 1.258 || 33.587 || 44.321 || <<2 -2 1 -8 -4 8]] || [<1 0 42|, <0 2 -2 1]] || 16/15 49/45 || || || 1.278 || 35.517 || 48.312 || <<0 0 5 0 8 12]] || [<5 8 12 0|, <0 0 0 1]] || 16/15 27/25 || || sharp || 1.333 || 19.537 || 28.942 || <<2 1 6 -3 4 11]] || [<1 1 2 1|, <0 2 1 6]] || 25/24 28/27 || || walid || 1.395 || 30.187 || 48.978 || <<2 -2 -2 -8 -9 1]] || [<2 0 8 9|, <0 1 -1 -1]] || 16/15 50/49 || || pelogic || 1.404 || 23.529 || 38.661 || <<1 -3 -4 -7 -9 -1]] || [<1 0 7 9|, <0 1 -3 -4]] || 21/20 135/128 || || || 1.412 || 36.009 || 59.866 || <<3 5 2 1 -5 -9]] || [<1 2 3 3|, <0 -3 -5 -2]] || 21/20 175/162 || || || 1.433 || 34.157 || 58.468 || <<1 -3 3 -7 2 15]] || [<1 0 7-2|, <0 1 -3 3]] || 28/27 35/32 || || dominant || 1.466 || 11.55 ||20.69 || <<1 4 -2 4 -6 -16]] || [<1 0 -4 6|, <0 1 4 -2]] || 36/35 64/63 || || pater || 1.469 || 29.457 || 53.001 || <<1 -1 -5 -4 -11 -9]] || [<1 0 4 11|, <0 1 -1 -5]] || 16/15 126/125 || || diminished || 1.494 || 12.047 ||22.401 || <<4 4 4 -3 -5 -2]] || [<4 0 3 5|, <0 1 1 1]] || 36/35 50/49 || || decimal || 1.502 || 15.075 ||28.334 || <<4 2 2 -6 -8 -1]] || [<2 0 3 4|, <0 2 1 1]] || 25/24 49/48 || || blacksmith || 1.526 || 13.21 ||25.64 || <<0 5 0 8 0 -14]] || [<5 8 0 14|, <0 0 1 0]] || 28/27 49/48 || || hystrix || 1.543 || 22.654 ||44.944 || <<3 5 1 1 -7 -12]] || [<1 2 3 3|, <0 -3 -5 -1]] || 36/35 160/147 || || dichotic || 1.588 || 17.871 || 37.565 || <<2 1 -4 -3 -12 -12]] || [<1 1 2 4|, <0 2 1 -4]] || 25/24 64/63 || || octokaidecal || 1.618 || 16.849 || 36.747 || <<2 6 6 5 4 -3]] || [<2 0 -5 -4|, <0 1 3 3]] || 28/27 50/49 || || fluorine || 1.618 || 25.482 || 55.623 || <<1 6 5 7 5 -5]] || [<1 0 -7 -5|, <0 1 6 5]] || 21/20 243/224 || || august || 1.655 || 11.594 || 26.459 || <<3 0 6 -7 1 14]] || [<3 0 7 -1|, <0 1 0 2]] || 36/35 128/125 || || deflated || 1.734 || 23.59 || 59.079 || <<3 0 -3 -7 -13 -7]] || [<3 0 7 13|, <0 1 0 -1]] || 21/20 128/125 || || jamesbond || 1.749 || 16.364 ||41.714 || <<0 0 7 0 11 16]] || [<7 11 16 0|, <0 0 0 1]] || 25/24 81/80 || || armodue || 1.804 || 18.075 ||49.038 || <<1 -3 5 -7 5 20]] || [<1 0 7 -5|, <0 1 -3 5]] || 36/35 135/128 || || opossum || 1.895 || 13.586 ||40.65 || <<3 5 9 1 6 7]] || [<1 2 3 4|, <0 -3 -5 -9]] || 28/27 126/125 || || pajara || 1.953 || 6.301 || 20.033 || <<2 -4 -4 -11 -12 2]] || [<2 0 11 12|, <0 1 -2 -2]] || 50/49 64/63 || || progression || 1.976 || 14.868 || 48.356 || <<5 3 7 -7 -3 8]] || [<1 1 2 2|, <0 5 3 7]] || 36/35 686/675 || || sidi || 2.074 || 15.794 || 56.586 || <<4 2 9 -6 3 15]] || [<1 3 3 6|, <0 -4 -2 -9]] || 25/24 245/243 || || godzilla || 2.181 || 6.748 ||26.747 || <<2 8 1 8 -4 -20]] || [<1 0 -4 2|, <0 2 8 1]] || 49/48 245/243 || || meantone || 2.205 || 3.384 ||13.707 || <<1 4 10 4 13 12]] || [<1 0 -4 -13|, <0 1 4 10]] || 81/80 126/125 || || injera || 2.205 || 7.686 || 31.13 || <<2 8 8 8 7 -4]] || [<2 0 -8 -7|, <0 1 4 4]] || 50/49 81/80 || || inflated || 2.224 || 13.279 || 54.729 || <<3 0 9 -7 6 21]] || [<3 0 7 -6|, <0 1 0 3]] || 28/27 128/125 || || negri || 2.245 || 6.308 || 26.483 || <<4 -3 2 -14 -8 13]] || [<1 2 2 3|, <0 -4 3 -2]] || 49/48 225/224 || || keemun || 2.28 || 6.326 || 27.408 || <<6 5 3 -6 -12 -7]] || [<1 0 1 2|, <0 6 5 3]] || 49/48 126/125 || || superpelog || 2.316 || 13.029 ||58.216 || <<2 -6 1 -14 -4 19]] || [<1 0 7 2|, <0 2 -6 1]] || 49/48 135/128 || || augene || 2.336 || 5.456 || 24.816 || <<3 0 -6 -7 -18 -14]] || [<3 0 7 18|, <0 1 0 -2]] || 64/63 126/125 || || ripple || 2.454 || 11.901 || 59.735 || <<5 8 2 1 -11 -18]] || [<1 2 3 3|, <0 -5 -8 -2]] || 36/35 3200/3087 || || triforce || 2.529 || 10.318 || 54.988 || <<6 0 3 -14 -12 7]] || [<3 0 7 6|, <0 2 0 1]] || 49/48 128/125 || || schism || 2.544 || 10.503 || 56.648 || <<1 -8 -2 -15 -6 18]] || [<1 0 15 6|, <0 1 -8 -2]] || 64/63 360/343 || || hexe || 2.689 || 9.578 || 57.73 || <<6 0 0 -14 -17 0]] || [<6 0 14 17|, <0 1 0 0]] || 50/49 128/125 || || hedgehog || 2.784 || 6.81 ||43.983 || <<6 10 10 2 -1 -5]] || [<2 1 1 2|, <0 3 5 5]] || 50/49 245/243 || || porcupine || 2.819 || 6.20 ||41.057 || <<3 5 -6 1 -18 -28]] || [<1 2 3 2|, <0 -3 -5 6]] || 64/63 250/243 || || superpyth || 2.874 || 4.695 ||32.318 || <<1 9 -2 12 -6 -30]] || [<1 0 -12 6|, <0 1 9 -2]] || 64/63 245/243 || || doublewide || 2.928 || 6.082 ||43.462 || <<8 6 6 -9 -13 -3]] || [<2 1 3 4|, <0 4 3 3]] || 50/49 875/864 || || magic || 2.937 || 2.631 || 18.918 || <<5 1 12 -10 5 25]] || [<1 0 2 -1|, <0 5 1 12]] || 225/224 245/243 || || nautilus || 2.943 || 7.955 ||57.42 || <<6 10 3 2 -12 -21]] || [<1 2 3 3|, <0 -6 -10 -3]] || 49/48 250/243 || || flattone || 2.987 || 5.186 ||38.553 || <<1 4 -9 4 -17 -32]] || [<1 0 -4 17|, <0 1 4 -9]] || 81/80 525/512 || || catler || 3.026 || 6.59 || 50.297 || <<0 0 12 0 19 28]] || [<12 19 28 0|, <0 0 0 1]] || 81/80 128/125 || || sensi || 3.08 || 3.242 || 25.622 || <<7 9 13 -2 1 5]] || [<1 6 8 11|, <0 -7 -9 -13]] || 126/125 245/243 || || beatles || 3.125 || 5.636 ||45.872 || <<2 -9 -4 -19 -12 16]] || [<1 1 5 4|, <0 2 -9 -4]] || 64/63 686/675 || || liese || 3.211 || 5.435 || 46.706 || <<3 12 11 12 9 -8]] || [<1 0 -4 -3|, <0 3 12 11]] || 81/80 686/675 || || muggles || 3.261 || 6.343 ||56.206 || <<5 1 -7 -10 -25 -19]] || [<1 0 2 5|, <0 5 1 -7]] || 126/125 525/512 || || triton || 3.342 || 6.365 || 59.245 || <<3 -7 -8 -18 -21 1]] || [<1 0 6 7|, <0 3 -7 -8]] || 225/224 1029/1000 || || porky || 3.362 || 5.774 || 54.389 || <<3 5 16 1 17 23]] || [<1 2 3 5|, <0 -3 -5 -16]] || 225/224 250/243 || || mothra || 3.573 || 3.491 || 37.146 || <<3 12 -1 12 -10 -36]] || [<1 1 0 3|, <0 3 12 -1]] || 81/80 1029/1024 || || orwell || 3.685 || 1.832 || 20.735 || <<7 -3 8 -21 -7 27]] || [<1 0 3 1|, <0 7 -3 8]] || 225/224 1728/1715 || || myna || 3.731 || 2.331 || 27.044 || <<10 9 7 -9 -17 -9]] || [<1 9 9 8|, <0 -10 -9 -7]] || 126/125 1728/1715 || || garibaldi || 3.823 || 1.778 ||21.644 || <<1 -8 -14 -15 -25 -10]] || [<1 0 15 25|, <0 1 -8 -14]] || 225/224 3125/3087 || || miracle || 3.991 || 1.261 ||16.742 || <<6 -7 -2 -25 -20 15]] || [<1 1 3 3|, <0 6 -7 -2]] || 225/224 1029/1024 || || squares || 4.022 || 3.412 ||45.993 || <<4 16 9 16 3 -24]] || [<1 3 8 6|, <0 -4 -16 -9]] || 81/80 2401/2400 || || valentine || 4.21 || 2.103 ||31.056 || <<9 5 -3 -13 -30 -21]] || [<1 1 2 3|, <0 9 5 -3]] || 126/125 1029/1024 || || diaschismic || 4.29 || 2.472 || 37.914 || <<2 -4 -16 -11 -31 -26]] || [<2 0 11 31|, <0 1 -2 -8]] || 126/125 2048/2025 || || mohajira || 4.368 || 3.504 ||55.714 || <<2 8 -11 8 -23 -48]] || [<1 1 0 6|, <0 2 8 -11]] || 81/80 6144/6125 || || nusecond || 4.454 || 3.048 ||50.389 || <<11 13 17 -5 -4 3]] || [<1 3 4 5|, <0 -11 -13 -17]] || 126/125 2430/2401 || || octacot || 4.551 || 1.961 || 33.845 || <<8 18 11 10 -5 -25]] || [<1 1 1 2|, <0 8 18 11]] || 243/245 2400/2401 || || würschmidt || 4.578 || 2.908 || 50.776 || <<8 1 18 -17 6 39]] || [<1 7 3 15|, <0 -8 -1 -18]] || 224/225 8748/8575 || || superkleismic || 4.62 || 2.6950 || 47.932 || <<9 10 -3 -5 -30 -35]] ||[<1 4 5 2|, <0 -9 -10 3]] || 875/864 1029/1024 || || catakleismic || 4.684 || 1.176 || 21.501 || <<6 5 22 -6 18 37]] || [<1 0 1 -3|, <0 6 5 22]] || 225/224 4375/4374 || || alicorn || 4.847 || 2.09 || 40.913 || <<8 13 23 2 14 17]] || [<1 2 3 4|, <0 -8 -13 -23]] || 126/125 10976/10935 || || rodan || 5.012 || 1.773 || 37.112 || <<3 17 -1 20 -10 -50]] || [<1 1 -1 3|, <0 3 17 -1]] || 245/243 1024/1029 || || shrutar || 5.101 || 2.185 ||47.377 || <<4 -8 14 -22 11 55]] || [<2 1 9 -2|, <0 2 -4 7]] || 245/243 2048/2025 || || tritonic || 5.291 || 2.039 ||47.578 || <<5 -11 -12 -29 -33 3]] || [<1 4 -3 -3|, <0 -5 11 12]] || 225/224 50421/50000 || || quartonic || 5.395 || 1.758 ||42.632 || <<11 18 5 3 -23 -39]] || [<1 2 3 3|, <0 -11 -18 -5]] || 1728/1715 4000/3969 || || clyde || 5.61 || 1.802 || 47.261 || <<12 10 25 -12 6 30]] || [<1 6 6 12|, <0 -12 -10 -25]] || 245/243 3136/3125 || || septimin || 5.874 || 1.896 ||54.502 || <<11 -6 10 -35 -15 40]] || [<1 4 1 5|, <0 -11 6 -10]] || 225/224 84035/82944 || || echidna || 5.925 || 1.984 || 58.033 || <<6 -12 10 -33 -1 57]] || [<2 1 9 2|, <0 3 -6 5]] || 1728/1715 2048/2025 || || compton || 5.927 || 1.219 ||35.686 || <<0 12 24 19 38 22]] || [<12 19 0 -22|, <0 0 1 2]] || 225/224 250047/250000 || || bidia || 5.94 || 1.921 || 56.474 || <<4 -8 -20 -22 -43 -24]] || [<4 0 22 43|, <0 1 -2 -5]] || 2048/2025 3136/3125 || || wizard || 6.372 || 1.207 || 40.846 || <<12 -2 20 -31 -2 52]] || [<2 1 5 2|, <0 6 -1 10]] || 225/224 118098/117649 || || buzzard || 6.42 || 1.396 ||47.963 || <<4 21 -3 24 -16 -66]] || [<1 0 -6 4|, <0 4 21 -3]] || 1728/1715 5120/5103 || || semisept || 6.499 || 1.434 ||50.472 || <<17 6 15 -30 -24 18]] || [<1 12 6 12|, <0 -17 -6 -15]] || 1728/1715 3136/3125 || || hemiwürschmidt || 6.598 || .5600 || 20.307 || <<16 2 5 -34 -37 6]] || [<1 15 4 7|, <0 -16 -2 -5]] || 2401/2400 3136/3125 || || hemikleismic || 6.704 || 1.39 || 52.054 || <<12 10 -9 -12 -48 -49]] ||[<1 0 1 4|, <0 12 10 -9]] || 4000/3969 6144/6125 || || || 6.706 || 1.58 || 59.218 || <<7 9 32 -2 31 49]] || [<1 6 8 23|, <0 -7 -9 -32]] || 225/224 78732/78125 || || hemififths || 6.812 || .575 ||22.243 || <<2 25 13 35 15 -40]] || [<1 1 -5 -1|, <0 2 25 13]] || 2401/2400 5120/5103 || || || 7.022 || 1.40 || 57.514 || <<7 26 25 25 20 -15]] || [<1 5 15 15|, <0 -7 -26 -25]] || 4000/3969 16875/16807 || || amity || 7.127 || .559 || 23.649 || <<5 13 -17 9 -41 -76]] || [<1 3 6 -2|, <0 -5 -13 17]] || 4375/4374 6144/6125 || || || 7.243 || 1.26 || 55.078 || <<7 -15 -16 -40 -45 5]] || [<1 5 -5 -5|, <0 -7 15 16]] || 225/224 2500000/2470629 || || parakleismic || 7.343 || .610 || 27.431 || <<13 14 35 -8 19 42]] || [<1 5 6 12|, <0 -13 -14 -35]] || 3136/3125 4375/4374 || || slender || 7.359 || 1.261 ||56.934 || <<13 -10 6 -46 -27 42]] || [<1 2 2 3|, <0 -13 10 -6]] || 225/224 589824/588245 || || hemithirds || 7.385 || .974 ||44.284 || <<15 -2 -5 -38 -50 -6]] || [<1 4 2 2|, <0 -15 2 5]] || 1029/1024 3136/3125 || || unidec || 7.662 || .785 || 38.393 || <<12 22 -4 7 -40 -71]] || [<2 5 8 5|, <0 -6 -11 2]] || 1029/1024 4375/4374 || || ennealimmal || 7.714 || .0730 || 3.610 || <<18 27 18 1 -22 -34]] ||[<9 1 1 12|, <0 2 3 2]] || 2401/2400 4375/4374 || || guiron || 7.795 || .939 || 47.544 || <<3 -24 -1 -45 -10 65]] || [<1 1 7 3|, <0 3 -24 -1]] || 1029/1024 10976/10935 || || misty || 7.993 || .691 || 36.802 || <<3 -12 -30 -26 -56 -36]] || [<3 0 26 56|, <0 1 -4 -10]] || 3136/3125 5120/5103 || || hendecatonic || 8.442 || .692 || 41.081 || <<11 -11 22 -43 4 82]] || [<11 0 43 -4|, <0 1 -1 2]] || 6144/6125 10976/10935 || || harry || 8.457 || .572 || 34.077 || <<12 34 20 26 -2 -49]] || [<2 4 7 7|, <0 -6 -17 -10]] || 2401/2400 19683/19600 || || || 8.57 || .924 || 56.557 || <<6 29 -2 32 -20 -86]] || [<1 4 14 2|, <0 -6 -29 2]] || 1029/1024 19683/19600 || || tritikleismic || 8.707 || .8920 || 56.337 || <<18 15 -6 -18 -60 -56]] ||[<3 0 3 10|, <0 6 5 -2]] || 1029/1024 15625/15552 || || quadritikleismic || 8.908 || .593 || 39.231 || <<24 20 16 -24 -42 -19]] || [<4 0 4 7|, <0 6 5 4]] || 2401/2400 15625/15552 || || hemischis || 9.155 || .656 || 45.817 || <<2 -16 25 -30 34 103]] || [<1 0 15 -17|, <0 2 -16 25]] || 6144/6125 19683/19600 || || || 9.279 || .757 || 54.303 || <<14 18 45 -4 32 54]] || [<1 6 8 17|, <0 -14 -18 -45]] || 3136/3125 19683/19600 || || countercata || 9.466 || .698 || 52.128 || <<6 5 -31 -6 -66 -86]] || [<1 0 1 11|, <0 6 5 -31]] || 5103/5120 15625/15552 || || grendel || 9.823 || .645 ||51.834 || <<23 -1 13 -55 -44 33]] || [<1 9 2 7|, <0 -23 1 -13]] || 6144/6125 16875/16807 || || kwai || 9.844 || .675 || 54.476 || <<1 33 27 50 40 -30]] || [<1 0 -50 -40|, <0 1 33 27]] || 5120/5103 16875/16807 || || hemischismic || 10.11 || .643 || 54.744 || <<2 -16 -40 -30 -69 -48]] ||[<2 0 30 69|, <0 1 -8 -20]] || 3136/3125 32805/32768 || || sesquiquartififths || 10.196 || .130 || 11.244 || <<4 -32 -15 -60 -35 55 ]] || [<1 1 7 5|, <0 4 -32 -15]] || 2400/2401 32805/32768 || || octoid || 10.207 || .491 || 42.67 || <<24 32 40 -5 -4 3]] || [<8 1 3 3|, <0 3 4 5]] || 4375/4374 16875/16807 || || tertiaseptal || 10.247 || .149 || 12.995 || <<22 -5 3 -59 -57 21]] || [<1 3 2 3|, <0 -22 5 -3]] || 2401/2400 65625/65536 || || mirkat || 10.652 || .628 || 59.376 || <<18 39 42 20 16 -12]] || [<3 2 1 2|, <0 6 13 14]] || 16875/16807 19683/19600 || || pontiac || 10.787 || .146 ||14.133 || <<1 -8 39 -15 59 113]] || [<1 0 15 -59|, <0 1 -8 39]] || 65625/65536 4374/4375 || || nessafof || 10.834 || .461 || 45.048 || <<21 15 -12 -25 -78 -70]] || [<3 2 5 10|, <0 7 5 -4]] || 6144/6125 250047/250000 || || || 11.375 || .533 || 57.499 || <<15 39 48 27 34 2]] || [<3 4 5 6|, <0 5 13 16]] || 10976/10935 235298/234375 || || || 11.425 || .494 || 53.76 || <<7 38 -4 44 -26 -116]] || [<1 3 10 2|, <0 -7 -38 4]] || 5103/5120 420175/419904 || || || 11.446 || .531 || 57.978 || <<29 16 40 -42 -18 48]] || [<1 1 2 2|, <0 29 16 40]] || 3136/3125 420175/419904 || || enneadecal || 11.926 || .0920 || 10.954 || <<19 19 57 -14 37 79]] || [<19 0 14 -37|, <0 1 1 3]] || 4375/4374 703125/702464 || || || 11.986 || .495 || 59.241 || <<18 -14 30 -64 -3 109]] || [<2 4 4 7|, <0 -9 7 -15]] || 6144/6125 118098/117649 || || quinmite || 12.636 || .281 || 37.322 || <<34 29 23 -33 -59 -28]] || [<1 27 24 20|, <0 -34 -29 -23]] || 2401/2400 1959552/1953125 || || gamera || 12.911 || .271 || 37.648 || <<23 40 1 10 -63 -110]] || [<1 6 10 3|, <0 -23 -40 -1]] || 4375/4374 589824/588245 || || || 12.973 || .324 || 45.473 || <<20 52 31 36 -7 -74]] || [<1 3 6 5|, <0 -20 -52 -31]] || 2401/2400 1600000/1594323 || || || 13.269 || .377 || 55.249 || <<31 41 53 -7 -3 8]] || [<1 21 28 36|, <0 -31 -41 -53]] || 4375/4374 235298/234375 || || term || 13.877 || .124 || 19.95 || <<3 -24 -54 -45 -94 -58]] || [<3 0 45 94|, <0 1 -8 -18]] || 32805/32768 250000/250047 || || mitonic || 14.474 || .144 ||25.184 || <<17 35 -21 16 -81 -147]] ||[<1 16 32 -15|, <0 -17 -35 21]] || 4375/4374 2100875/2097152 || || || 14.679 || .144 || 25.84 || <<23 -13 42 -74 2 134]] || [<1 11 -3 20|, <0 -23 13 -42]] || 65625/65536 420175/419904 || || emmthird || 14.897 || .0900 || 16.736 || <<14 59 33 61 13 -89]] || [<1 11 42 25|, <0 -14 -59 -33]] || 2401/2400 14348907/14336000 || || || 14.948 || .182 || 33.902 || <<20 -30 -10 -94 -72 61]] || [<10 0 47 36|, <0 2 -3 -1]] || 2400/2401 67108864/66976875 || || neptune || 15.001 || .125 ||23.427 || <<40 22 21 -58 -79 -13]] || [<1 21 13 13|, <0 -40 -22 -21]] || 2401/2400 48828125/48771072 || || mutt || 15.075 || .150 || 28.406 || <<21 3 -36 -44 -116 -92]] || [<3 5 7 8|, <0 -7 -1 12]] || 65625/65536 250047/250000 || || tsaharuk || 15.75 || .148 || 30.697 || <<5 -40 24 -75 24 168]] || [<1 1 7 0|, <0 5 -40 24]] || 32805/32768 420175/419904 || || || 16.64 || .0730 || 16.814 || <<15 51 72 46 72 24]] || [<3 3 1 0|, <0 5 17 24]] || 250047/250000 2460375/2458624 || || quasiorwell || 16.766 || .153 ||35.832 || <<38 -3 8 -93 -94 27]] || [<1 31 0 9|, <0 -38 3 -8]] || 2401/2400 29360128/29296875 || || vishnu || 16.789 || .178 || 41.912 || <<14 6 74 -23 78 155]] || [<2 4 5 10|, <0 -7 -3 -37]] || 4375/4374 29360128/29296875 || || || 16.876 || .176 || 41.878 || <<2 -57 -28 -95 -50 95]] || [<1 1 19 11|, <0 2 -57 -28]] || 2401/2400 33554432/33480783 || || supermajor || 16.944 || .0450 || 10.836 || <<37 46 75 -13 15 45]] ||[<1 15 19 30|, <0 -37 -46 -75]] || 4375/4374 52734375/52706752 || || || 17.375 || .116 || 29.267 || <<41 14 60 -73 -20 100]] || [<1 27 11 40|, <0 -41 -14 -60]] || 420175/419904 703125/702464 || || vulture || 17.675 || .142 || 36.985 || <<4 21 -56 24 -100 -189]] || [<1 0 -6 25|, <0 4 21 -56]] || 4375/4374 33554432/33480783 || || || 18.931 || .148 || 44.115 || <<26 -37 -12 -119 -92 76]] || [<1 25 -31 -8|, <0 -26 37 12]] || 2401/2400 2152828125/2147483648 || || || 19.245 || .182 || 56.184 || <<32 33 92 -22 56 121]] || [<1 10 11 27|, <0 -32 -33 -92]] || 4375/4374 2202927104/2197265625 || || || 19.517 || .144 || 45.66 || <<39 30 -18 -43 -138 -126]] || [<3 10 11 6|, <0 -13 -10 6]] || 250047/250000 2100875/2097152 || || || 19.87 || .175 || 57.632 || <<52 56 41 -32 -81 -62]] || [<1 31 34 26|, <0 -52 -56 -41]] || 2401/2400 1224440064/1220703125 || || || 19.992 || .133 || 44.417 || <<13 67 -6 76 -46 -202]] || [<1 12 56 -2|, <0 -13 -67 6]] || 420175/419904 5250987/5242880 || =Junk temperaments= || Name || Complexity || Error || Badness || Wedgie || Mapping || Commas || || || .266 || 400.986 || 23.561 || <<0 0 1 0 2 2]] || [<1 2 2 0] [0 0 0 1]] || 4/3 3/5 || || || .340 || 252.955 || 24.334 || <<0 1 0 2 0 -3]] || [<1 2 0 3|, <0 0 1 0]] || 6/7 3/4 || || || .367 || 309.005 || 34.752 || <<0 1 1 2 2 0]] || [<1 2 0 0] [0 0 1 1]] || 4/3 5/7 || || || .373 || 199.358 || 23.114 || <<1 1 1 -1 -1 0]] || [<1 0 11|, <0 1 1 1]] || 6/5 5/7 || || || .401 || 168.811 || 22.624 || <<1 0 1 -2 -1 2]] || [<1 0 2 1|, <0 1 0 1]] || 15/14 6/7 || || || .437 || 223.834 || 35.689 || <<1 0 0 -2 -3 0]] || [<1 0 2 3|, <0 1 0 0]] || 10/7 5/4 || || || .458 || 152.797 || 26.72 || <<1 1 2 -1 0 2]] || [<1 0 1 0|, <0 1 1 2]] || 6/5 15/14 || || || .470 || 135.12 || 24.843 || <<1 1 0 -1 -3 -3]] || [<1 0 1 3|, <0 1 1 0]] || 6/5 21/20 || || || .508 || 134.886 || 29.047 || <<0 0 2 0 3 5]] || [<2 3 5 0] [0 0 0 1]] || 6/5 9/8 || || || .517 || 100.76 || 22.434 || <<1 2 1 1 -1 -3]] || [<1 0 -1 1|, <0 1 2 1]] || 9/10 6/7 || || || .536 || 159.295 || 38.111 || <<1 0 -1 -2 -4 -2]] || [<1 0 2 4|, <0 1 0 -1]] || 21/25 4/5 || || || .603 || 180.305 || 54.612 || <<1 1 -1 -1 -4 -5]] || [<1 0 1 4|, <0 1 1 -1]] || 63/40 6/5 || || || .613 || 126.55 || 39.612 || <<0 2 0 3 0 -6]] || [<2 3 0 6|, <0 0 1 0]] || 9/7 8/7 || || || .631 || 58.311 || 19.373 || <<0 2 2 3 3 -1]] || [<2 3 0 1|, <0 0 1 1]] || 20/21 14/15 || || || .637 || 70.842 || 23.922 || <<1 -1 0 -4 -3 3]] || [<1 0 4 3|, <0 1 -1 0]] || 8/7 15/14 || || || .648 || 81.437 || 28.454 || <<1 2 0 1 -3 -6]] || [<1 0 -1 3|, <0 1 2 0]] || 8/7 10/9 || || || .649 || 103.614 || 36.419 || <<1 -1 1 -4 -1 5]] || [<1 0 4 1|, <0 1 -1 1]] || 6/7 45/56 || || || .656 || 66.836 || 23.962 || <<1 2 3 1 2 1]] || [<1 0 -1 -2|, <0 1 2 3]] || 14/15 21/25 || || || .724 || 136.735 || 59.654 || <<2 2 2 -1 -2 -1]] || [<2 0 1 2|, <0 1 1 1]] || 25/21 6/7 || || || .736 || 97.698 || 44.046 || <<2 1 2 -3 -2 2]] || [<1 1 2 2|, <0 2 1 2]] || 25/28 6/7 || || || .736 || 132.937 || 59.948 || <<1 3 2 2 0 -4]] || [<1 0 -2 0|, <0 1 3 2]] || 9/7 20/21 || || || .770 || 58.026 || 28.673 || <<0 0 3 0 5 7]] || [<3 5 7 0] [0 0 0 1]] || 10/9 24/25 ||
Original HTML content:
<html><head><title>Catalog of seven-limit rank two temperaments</title></head><body>Below is a <strong>complete</strong> listing of all 179 7-limit rank-two temperaments with TE complexity less than 20 and TE badness less than 0.06, obtained by the method discussed <a class="wiki_link" href="/The%20wedgie">here</a>. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "Junk" temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Temperament list"></a><!-- ws:end:WikiTextHeadingRule:0 -->Temperament list</h1> <table class="wiki_table"> <tr> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Error<br /> </td> <td>Badness<br /> </td> <td>Wedgie<br /> </td> <td>Mapping<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>dicot<br /> </td> <td>.818<br /> </td> <td>35.781<br /> </td> <td>19.935<br /> </td> <td><<2 1 3 -3 -1 4]]<br /> </td> <td>[<1 1 2 2|, <0 2 1 3]]<br /> </td> <td>15/14 25/24<br /> </td> </tr> <tr> <td>mother<br /> </td> <td>.835<br /> </td> <td>41.553<br /> </td> <td>24.152<br /> </td> <td><<1 -1 -2 -4 -6 -2]]<br /> </td> <td>[<1 0 4 6|, <0 1 -1 -2]]<br /> </td> <td>16/15 21/20<br /> </td> </tr> <tr> <td>minos<br /> </td> <td>.859<br /> </td> <td>86.798<br /> </td> <td>53.389<br /> </td> <td><<1 2 4 1 4 4]]<br /> </td> <td>[<1 0 -1 -4|, <0 1 2 4]]<br /> </td> <td>10/9 28/25<br /> </td> </tr> <tr> <td>geryon<br /> </td> <td>.863<br /> </td> <td>82.117<br /> </td> <td>51.009<br /> </td> <td><<2 1 0 -3 -6 -3]]<br /> </td> <td>[<1 1 2 3|, <0 2 1 0]]<br /> </td> <td>8/7 25/21<br /> </td> </tr> <tr> <td>antaeus<br /> </td> <td>.887<br /> </td> <td>57.236<br /> </td> <td>37.537<br /> </td> <td><<0 2 -2 3 -3 -10]]<br /> </td> <td>[<2 3 0 10|, <0 0 1 -1]]<br /> </td> <td>9/8 35/32<br /> </td> </tr> <tr> <td>beep<br /> </td> <td>.917<br /> </td> <td>26.605<br /> </td> <td>18.638<br /> </td> <td><<2 3 1 0 -4 -6]]<br /> </td> <td>[<1 0 0 2|, <0 2 3 1]]<br /> </td> <td>21/20 27/25<br /> </td> </tr> <tr> <td>father<br /> </td> <td>.954<br /> </td> <td>28.092<br /> </td> <td>21.312<br /> </td> <td><<1 -1 3 -4 2 10]]<br /> </td> <td>[<1 0 4 -2|, <0 1 -1 3]]<br /> </td> <td>16/15 28/27<br /> </td> </tr> <tr> <td>flat<br /> </td> <td>.969<br /> </td> <td>32.444<br /> </td> <td>25.381<br /> </td> <td><<2 1 -1 -3 -7 -5]]<br /> </td> <td>[<1 1 2 3|, <0 2 1 -1]]<br /> </td> <td>21/20 25/24<br /> </td> </tr> <tr> <td>quad<br /> </td> <td>.979<br /> </td> <td>57.541<br /> </td> <td>45.991<br /> </td> <td><<0 0 4 0 6 9]]<br /> </td> <td>[<4 6 9 0] [0 0 0 1]]<br /> </td> <td>9/8 25/24<br /> </td> </tr> <tr> <td>phlegyas<br /> </td> <td>.991<br /> </td> <td>62.667<br /> </td> <td>51.293<br /> </td> <td><<1 2 -2 1 -6 -10]]<br /> </td> <td>[<1 0 -1 6|, <0 1 2 -2]]<br /> </td> <td>10/9 35/32<br /> </td> </tr> <tr> <td>malacoda<br /> </td> <td>.997<br /> </td> <td>44.954<br /> </td> <td>37.207<br /> </td> <td><<2 -1 1 -6 -4 5]]<br /> </td> <td>[<1 0 3 2|, <0 2 -1 1]]<br /> </td> <td>15/14 35/32<br /> </td> </tr> <tr> <td>sharptone<br /> </td> <td>1.022<br /> </td> <td>28.544<br /> </td> <td>24.848<br /> </td> <td><<1 4 3 4 2 -4]]<br /> </td> <td>[<1 0 -4 -2|, <0 1 4 3]]<br /> </td> <td>21/20 28/27<br /> </td> </tr> <tr> <td>ugolino<br /> </td> <td>1.068<br /> </td> <td>46.01<br /> </td> <td>43.758<br /> </td> <td><<2 3 5 0 2 3]]<br /> </td> <td>[<1 0 0 -1|, <0 2 3 5]]<br /> </td> <td>15/14 27/25<br /> </td> </tr> <tr> <td>charon<br /> </td> <td>1.082<br /> </td> <td>57.767<br /> </td> <td>56.404<br /> </td> <td><<2 4 4 2 1 -2]]<br /> </td> <td>[<2 0 -2 -1|, <0 1 2 2]]<br /> </td> <td>10/9 49/45<br /> </td> </tr> <tr> <td>nessus<br /> </td> <td>1.133<br /> </td> <td>55.258<br /> </td> <td>59.07<br /> </td> <td><<2 4 1 2 -4 -9]]<br /> </td> <td>[<1 0 -1 2|, <0 2 4 1]]<br /> </td> <td>10/9 49/48<br /> </td> </tr> <tr> <td>penta<br /> </td> <td>1.163<br /> </td> <td>41.597<br /> </td> <td>46.882<br /> </td> <td><<3 2 4 -4 -2 4]]<br /> </td> <td>[<1 1 2 2|, <0 3 2 4]]<br /> </td> <td>28/25 36/35<br /> </td> </tr> <tr> <td>medusa<br /> </td> <td>1.182<br /> </td> <td>36.664<br /> </td> <td>42.712<br /> </td> <td><<1 -3 -2 -7 -6 4]]<br /> </td> <td>[<1 0 7 6|, <0 1 -3 -2]]<br /> </td> <td>15/14 64/63<br /> </td> </tr> <tr> <td>plutus<br /> </td> <td>1.224<br /> </td> <td>36.293<br /> </td> <td>45.275<br /> </td> <td><<1 4 5 4 5 0]]<br /> </td> <td>[<1 0 -4 -5|, <0 1 4 5]]<br /> </td> <td>15/14 81/80<br /> </td> </tr> <tr> <td><br /> </td> <td>1.241<br /> </td> <td>43.494<br /> </td> <td>55.814<br /> </td> <td><<2 5 3 3 -1 -7]]<br /> </td> <td>[<1 1 1 2|, <0 2 5 3]]<br /> </td> <td>21/20 54/49<br /> </td> </tr> <tr> <td><br /> </td> <td>1.257<br /> </td> <td>41.576<br /> </td> <td>54.77<br /> </td> <td><<2 3 6 0 4 6]]<br /> </td> <td>[<1 0 0 -2|, <0 2 3 6]]<br /> </td> <td>27/25 28/25<br /> </td> </tr> <tr> <td>baba<br /> </td> <td>1.258<br /> </td> <td>33.587<br /> </td> <td>44.321<br /> </td> <td><<2 -2 1 -8 -4 8]]<br /> </td> <td>[<1 0 42|, <0 2 -2 1]]<br /> </td> <td>16/15 49/45<br /> </td> </tr> <tr> <td><br /> </td> <td>1.278<br /> </td> <td>35.517<br /> </td> <td>48.312<br /> </td> <td><<0 0 5 0 8 12]]<br /> </td> <td>[<5 8 12 0|, <0 0 0 1]]<br /> </td> <td>16/15 27/25<br /> </td> </tr> <tr> <td>sharp<br /> </td> <td>1.333<br /> </td> <td>19.537<br /> </td> <td>28.942<br /> </td> <td><<2 1 6 -3 4 11]]<br /> </td> <td>[<1 1 2 1|, <0 2 1 6]]<br /> </td> <td>25/24 28/27<br /> </td> </tr> <tr> <td>walid<br /> </td> <td>1.395<br /> </td> <td>30.187<br /> </td> <td>48.978<br /> </td> <td><<2 -2 -2 -8 -9 1]]<br /> </td> <td>[<2 0 8 9|, <0 1 -1 -1]]<br /> </td> <td>16/15 50/49<br /> </td> </tr> <tr> <td>pelogic<br /> </td> <td>1.404<br /> </td> <td>23.529<br /> </td> <td>38.661<br /> </td> <td><<1 -3 -4 -7 -9 -1]]<br /> </td> <td>[<1 0 7 9|, <0 1 -3 -4]]<br /> </td> <td>21/20 135/128<br /> </td> </tr> <tr> <td><br /> </td> <td>1.412<br /> </td> <td>36.009<br /> </td> <td>59.866<br /> </td> <td><<3 5 2 1 -5 -9]]<br /> </td> <td>[<1 2 3 3|, <0 -3 -5 -2]]<br /> </td> <td>21/20 175/162<br /> </td> </tr> <tr> <td><br /> </td> <td>1.433<br /> </td> <td>34.157<br /> </td> <td>58.468<br /> </td> <td><<1 -3 3 -7 2 15]]<br /> </td> <td>[<1 0 7-2|, <0 1 -3 3]]<br /> </td> <td>28/27 35/32<br /> </td> </tr> <tr> <td>dominant<br /> </td> <td>1.466<br /> </td> <td>11.55<br /> </td> <td>20.69<br /> </td> <td><<1 4 -2 4 -6 -16]]<br /> </td> <td>[<1 0 -4 6|, <0 1 4 -2]]<br /> </td> <td>36/35 64/63<br /> </td> </tr> <tr> <td>pater<br /> </td> <td>1.469<br /> </td> <td>29.457<br /> </td> <td>53.001<br /> </td> <td><<1 -1 -5 -4 -11 -9]]<br /> </td> <td>[<1 0 4 11|, <0 1 -1 -5]]<br /> </td> <td>16/15 126/125<br /> </td> </tr> <tr> <td>diminished<br /> </td> <td>1.494<br /> </td> <td>12.047<br /> </td> <td>22.401<br /> </td> <td><<4 4 4 -3 -5 -2]]<br /> </td> <td>[<4 0 3 5|, <0 1 1 1]]<br /> </td> <td>36/35 50/49<br /> </td> </tr> <tr> <td>decimal<br /> </td> <td>1.502<br /> </td> <td>15.075<br /> </td> <td>28.334<br /> </td> <td><<4 2 2 -6 -8 -1]]<br /> </td> <td>[<2 0 3 4|, <0 2 1 1]]<br /> </td> <td>25/24 49/48<br /> </td> </tr> <tr> <td>blacksmith<br /> </td> <td>1.526<br /> </td> <td>13.21<br /> </td> <td>25.64<br /> </td> <td><<0 5 0 8 0 -14]]<br /> </td> <td>[<5 8 0 14|, <0 0 1 0]]<br /> </td> <td>28/27 49/48<br /> </td> </tr> <tr> <td>hystrix<br /> </td> <td>1.543<br /> </td> <td>22.654<br /> </td> <td>44.944<br /> </td> <td><<3 5 1 1 -7 -12]]<br /> </td> <td>[<1 2 3 3|, <0 -3 -5 -1]]<br /> </td> <td>36/35 160/147<br /> </td> </tr> <tr> <td>dichotic<br /> </td> <td>1.588<br /> </td> <td>17.871<br /> </td> <td>37.565<br /> </td> <td><<2 1 -4 -3 -12 -12]]<br /> </td> <td>[<1 1 2 4|, <0 2 1 -4]]<br /> </td> <td>25/24 64/63<br /> </td> </tr> <tr> <td>octokaidecal<br /> </td> <td>1.618<br /> </td> <td>16.849<br /> </td> <td>36.747<br /> </td> <td><<2 6 6 5 4 -3]]<br /> </td> <td>[<2 0 -5 -4|, <0 1 3 3]]<br /> </td> <td>28/27 50/49<br /> </td> </tr> <tr> <td>fluorine<br /> </td> <td>1.618<br /> </td> <td>25.482<br /> </td> <td>55.623<br /> </td> <td><<1 6 5 7 5 -5]]<br /> </td> <td>[<1 0 -7 -5|, <0 1 6 5]]<br /> </td> <td>21/20 243/224<br /> </td> </tr> <tr> <td>august<br /> </td> <td>1.655<br /> </td> <td>11.594<br /> </td> <td>26.459<br /> </td> <td><<3 0 6 -7 1 14]]<br /> </td> <td>[<3 0 7 -1|, <0 1 0 2]]<br /> </td> <td>36/35 128/125<br /> </td> </tr> <tr> <td>deflated<br /> </td> <td>1.734<br /> </td> <td>23.59<br /> </td> <td>59.079<br /> </td> <td><<3 0 -3 -7 -13 -7]]<br /> </td> <td>[<3 0 7 13|, <0 1 0 -1]]<br /> </td> <td>21/20 128/125<br /> </td> </tr> <tr> <td>jamesbond<br /> </td> <td>1.749<br /> </td> <td>16.364<br /> </td> <td>41.714<br /> </td> <td><<0 0 7 0 11 16]]<br /> </td> <td>[<7 11 16 0|, <0 0 0 1]]<br /> </td> <td>25/24 81/80<br /> </td> </tr> <tr> <td>armodue<br /> </td> <td>1.804<br /> </td> <td>18.075<br /> </td> <td>49.038<br /> </td> <td><<1 -3 5 -7 5 20]]<br /> </td> <td>[<1 0 7 -5|, <0 1 -3 5]]<br /> </td> <td>36/35 135/128<br /> </td> </tr> <tr> <td>opossum<br /> </td> <td>1.895<br /> </td> <td>13.586<br /> </td> <td>40.65<br /> </td> <td><<3 5 9 1 6 7]]<br /> </td> <td>[<1 2 3 4|, <0 -3 -5 -9]]<br /> </td> <td>28/27 126/125<br /> </td> </tr> <tr> <td>pajara<br /> </td> <td>1.953<br /> </td> <td>6.301<br /> </td> <td>20.033<br /> </td> <td><<2 -4 -4 -11 -12 2]]<br /> </td> <td>[<2 0 11 12|, <0 1 -2 -2]]<br /> </td> <td>50/49 64/63<br /> </td> </tr> <tr> <td>progression<br /> </td> <td>1.976<br /> </td> <td>14.868<br /> </td> <td>48.356<br /> </td> <td><<5 3 7 -7 -3 8]]<br /> </td> <td>[<1 1 2 2|, <0 5 3 7]]<br /> </td> <td>36/35 686/675<br /> </td> </tr> <tr> <td>sidi<br /> </td> <td>2.074<br /> </td> <td>15.794<br /> </td> <td>56.586<br /> </td> <td><<4 2 9 -6 3 15]]<br /> </td> <td>[<1 3 3 6|, <0 -4 -2 -9]]<br /> </td> <td>25/24 245/243<br /> </td> </tr> <tr> <td>godzilla<br /> </td> <td>2.181<br /> </td> <td>6.748<br /> </td> <td>26.747<br /> </td> <td><<2 8 1 8 -4 -20]]<br /> </td> <td>[<1 0 -4 2|, <0 2 8 1]]<br /> </td> <td>49/48 245/243<br /> </td> </tr> <tr> <td>meantone<br /> </td> <td>2.205<br /> </td> <td>3.384<br /> </td> <td>13.707<br /> </td> <td><<1 4 10 4 13 12]]<br /> </td> <td>[<1 0 -4 -13|, <0 1 4 10]]<br /> </td> <td>81/80 126/125<br /> </td> </tr> <tr> <td>injera<br /> </td> <td>2.205<br /> </td> <td>7.686<br /> </td> <td>31.13<br /> </td> <td><<2 8 8 8 7 -4]]<br /> </td> <td>[<2 0 -8 -7|, <0 1 4 4]]<br /> </td> <td>50/49 81/80<br /> </td> </tr> <tr> <td>inflated<br /> </td> <td>2.224<br /> </td> <td>13.279<br /> </td> <td>54.729<br /> </td> <td><<3 0 9 -7 6 21]]<br /> </td> <td>[<3 0 7 -6|, <0 1 0 3]]<br /> </td> <td>28/27 128/125<br /> </td> </tr> <tr> <td>negri<br /> </td> <td>2.245<br /> </td> <td>6.308<br /> </td> <td>26.483<br /> </td> <td><<4 -3 2 -14 -8 13]]<br /> </td> <td>[<1 2 2 3|, <0 -4 3 -2]]<br /> </td> <td>49/48 225/224<br /> </td> </tr> <tr> <td>keemun<br /> </td> <td>2.28<br /> </td> <td>6.326<br /> </td> <td>27.408<br /> </td> <td><<6 5 3 -6 -12 -7]]<br /> </td> <td>[<1 0 1 2|, <0 6 5 3]]<br /> </td> <td>49/48 126/125<br /> </td> </tr> <tr> <td>superpelog<br /> </td> <td>2.316<br /> </td> <td>13.029<br /> </td> <td>58.216<br /> </td> <td><<2 -6 1 -14 -4 19]]<br /> </td> <td>[<1 0 7 2|, <0 2 -6 1]]<br /> </td> <td>49/48 135/128<br /> </td> </tr> <tr> <td>augene<br /> </td> <td>2.336<br /> </td> <td>5.456<br /> </td> <td>24.816<br /> </td> <td><<3 0 -6 -7 -18 -14]]<br /> </td> <td>[<3 0 7 18|, <0 1 0 -2]]<br /> </td> <td>64/63 126/125<br /> </td> </tr> <tr> <td>ripple<br /> </td> <td>2.454<br /> </td> <td>11.901<br /> </td> <td>59.735<br /> </td> <td><<5 8 2 1 -11 -18]]<br /> </td> <td>[<1 2 3 3|, <0 -5 -8 -2]]<br /> </td> <td>36/35 3200/3087<br /> </td> </tr> <tr> <td>triforce<br /> </td> <td>2.529<br /> </td> <td>10.318<br /> </td> <td>54.988<br /> </td> <td><<6 0 3 -14 -12 7]]<br /> </td> <td>[<3 0 7 6|, <0 2 0 1]]<br /> </td> <td>49/48 128/125<br /> </td> </tr> <tr> <td>schism<br /> </td> <td>2.544<br /> </td> <td>10.503<br /> </td> <td>56.648<br /> </td> <td><<1 -8 -2 -15 -6 18]]<br /> </td> <td>[<1 0 15 6|, <0 1 -8 -2]]<br /> </td> <td>64/63 360/343<br /> </td> </tr> <tr> <td>hexe<br /> </td> <td>2.689<br /> </td> <td>9.578<br /> </td> <td>57.73<br /> </td> <td><<6 0 0 -14 -17 0]]<br /> </td> <td>[<6 0 14 17|, <0 1 0 0]]<br /> </td> <td>50/49 128/125<br /> </td> </tr> <tr> <td>hedgehog<br /> </td> <td>2.784<br /> </td> <td>6.81<br /> </td> <td>43.983<br /> </td> <td><<6 10 10 2 -1 -5]]<br /> </td> <td>[<2 1 1 2|, <0 3 5 5]]<br /> </td> <td>50/49 245/243<br /> </td> </tr> <tr> <td>porcupine<br /> </td> <td>2.819<br /> </td> <td>6.20<br /> </td> <td>41.057<br /> </td> <td><<3 5 -6 1 -18 -28]]<br /> </td> <td>[<1 2 3 2|, <0 -3 -5 6]]<br /> </td> <td>64/63 250/243<br /> </td> </tr> <tr> <td>superpyth<br /> </td> <td>2.874<br /> </td> <td>4.695<br /> </td> <td>32.318<br /> </td> <td><<1 9 -2 12 -6 -30]]<br /> </td> <td>[<1 0 -12 6|, <0 1 9 -2]]<br /> </td> <td>64/63 245/243<br /> </td> </tr> <tr> <td>doublewide<br /> </td> <td>2.928<br /> </td> <td>6.082<br /> </td> <td>43.462<br /> </td> <td><<8 6 6 -9 -13 -3]]<br /> </td> <td>[<2 1 3 4|, <0 4 3 3]]<br /> </td> <td>50/49 875/864<br /> </td> </tr> <tr> <td>magic<br /> </td> <td>2.937<br /> </td> <td>2.631<br /> </td> <td>18.918<br /> </td> <td><<5 1 12 -10 5 25]]<br /> </td> <td>[<1 0 2 -1|, <0 5 1 12]]<br /> </td> <td>225/224 245/243<br /> </td> </tr> <tr> <td>nautilus<br /> </td> <td>2.943<br /> </td> <td>7.955<br /> </td> <td>57.42<br /> </td> <td><<6 10 3 2 -12 -21]]<br /> </td> <td>[<1 2 3 3|, <0 -6 -10 -3]]<br /> </td> <td>49/48 250/243<br /> </td> </tr> <tr> <td>flattone<br /> </td> <td>2.987<br /> </td> <td>5.186<br /> </td> <td>38.553<br /> </td> <td><<1 4 -9 4 -17 -32]]<br /> </td> <td>[<1 0 -4 17|, <0 1 4 -9]]<br /> </td> <td>81/80 525/512<br /> </td> </tr> <tr> <td>catler<br /> </td> <td>3.026<br /> </td> <td>6.59<br /> </td> <td>50.297<br /> </td> <td><<0 0 12 0 19 28]]<br /> </td> <td>[<12 19 28 0|, <0 0 0 1]]<br /> </td> <td>81/80 128/125<br /> </td> </tr> <tr> <td>sensi<br /> </td> <td>3.08<br /> </td> <td>3.242<br /> </td> <td>25.622<br /> </td> <td><<7 9 13 -2 1 5]]<br /> </td> <td>[<1 6 8 11|, <0 -7 -9 -13]]<br /> </td> <td>126/125 245/243<br /> </td> </tr> <tr> <td>beatles<br /> </td> <td>3.125<br /> </td> <td>5.636<br /> </td> <td>45.872<br /> </td> <td><<2 -9 -4 -19 -12 16]]<br /> </td> <td>[<1 1 5 4|, <0 2 -9 -4]]<br /> </td> <td>64/63 686/675<br /> </td> </tr> <tr> <td>liese<br /> </td> <td>3.211<br /> </td> <td>5.435<br /> </td> <td>46.706<br /> </td> <td><<3 12 11 12 9 -8]]<br /> </td> <td>[<1 0 -4 -3|, <0 3 12 11]]<br /> </td> <td>81/80 686/675<br /> </td> </tr> <tr> <td>muggles<br /> </td> <td>3.261<br /> </td> <td>6.343<br /> </td> <td>56.206<br /> </td> <td><<5 1 -7 -10 -25 -19]]<br /> </td> <td>[<1 0 2 5|, <0 5 1 -7]]<br /> </td> <td>126/125 525/512<br /> </td> </tr> <tr> <td>triton<br /> </td> <td>3.342<br /> </td> <td>6.365<br /> </td> <td>59.245<br /> </td> <td><<3 -7 -8 -18 -21 1]]<br /> </td> <td>[<1 0 6 7|, <0 3 -7 -8]]<br /> </td> <td>225/224 1029/1000<br /> </td> </tr> <tr> <td>porky<br /> </td> <td>3.362<br /> </td> <td>5.774<br /> </td> <td>54.389<br /> </td> <td><<3 5 16 1 17 23]]<br /> </td> <td>[<1 2 3 5|, <0 -3 -5 -16]]<br /> </td> <td>225/224 250/243<br /> </td> </tr> <tr> <td>mothra<br /> </td> <td>3.573<br /> </td> <td>3.491<br /> </td> <td>37.146<br /> </td> <td><<3 12 -1 12 -10 -36]]<br /> </td> <td>[<1 1 0 3|, <0 3 12 -1]]<br /> </td> <td>81/80 1029/1024<br /> </td> </tr> <tr> <td>orwell<br /> </td> <td>3.685<br /> </td> <td>1.832<br /> </td> <td>20.735<br /> </td> <td><<7 -3 8 -21 -7 27]]<br /> </td> <td>[<1 0 3 1|, <0 7 -3 8]]<br /> </td> <td>225/224 1728/1715<br /> </td> </tr> <tr> <td>myna<br /> </td> <td>3.731<br /> </td> <td>2.331<br /> </td> <td>27.044<br /> </td> <td><<10 9 7 -9 -17 -9]]<br /> </td> <td>[<1 9 9 8|, <0 -10 -9 -7]]<br /> </td> <td>126/125 1728/1715<br /> </td> </tr> <tr> <td>garibaldi<br /> </td> <td>3.823<br /> </td> <td>1.778<br /> </td> <td>21.644<br /> </td> <td><<1 -8 -14 -15 -25 -10]]<br /> </td> <td>[<1 0 15 25|, <0 1 -8 -14]]<br /> </td> <td>225/224 3125/3087<br /> </td> </tr> <tr> <td>miracle<br /> </td> <td>3.991<br /> </td> <td>1.261<br /> </td> <td>16.742<br /> </td> <td><<6 -7 -2 -25 -20 15]]<br /> </td> <td>[<1 1 3 3|, <0 6 -7 -2]]<br /> </td> <td>225/224 1029/1024<br /> </td> </tr> <tr> <td>squares<br /> </td> <td>4.022<br /> </td> <td>3.412<br /> </td> <td>45.993<br /> </td> <td><<4 16 9 16 3 -24]]<br /> </td> <td>[<1 3 8 6|, <0 -4 -16 -9]]<br /> </td> <td>81/80 2401/2400<br /> </td> </tr> <tr> <td>valentine<br /> </td> <td>4.21<br /> </td> <td>2.103<br /> </td> <td>31.056<br /> </td> <td><<9 5 -3 -13 -30 -21]]<br /> </td> <td>[<1 1 2 3|, <0 9 5 -3]]<br /> </td> <td>126/125 1029/1024<br /> </td> </tr> <tr> <td>diaschismic<br /> </td> <td>4.29<br /> </td> <td>2.472<br /> </td> <td>37.914<br /> </td> <td><<2 -4 -16 -11 -31 -26]]<br /> </td> <td>[<2 0 11 31|, <0 1 -2 -8]]<br /> </td> <td>126/125 2048/2025<br /> </td> </tr> <tr> <td>mohajira<br /> </td> <td>4.368<br /> </td> <td>3.504<br /> </td> <td>55.714<br /> </td> <td><<2 8 -11 8 -23 -48]]<br /> </td> <td>[<1 1 0 6|, <0 2 8 -11]]<br /> </td> <td>81/80 6144/6125<br /> </td> </tr> <tr> <td>nusecond<br /> </td> <td>4.454<br /> </td> <td>3.048<br /> </td> <td>50.389<br /> </td> <td><<11 13 17 -5 -4 3]]<br /> </td> <td>[<1 3 4 5|, <0 -11 -13 -17]]<br /> </td> <td>126/125 2430/2401<br /> </td> </tr> <tr> <td>octacot<br /> </td> <td>4.551<br /> </td> <td>1.961<br /> </td> <td>33.845<br /> </td> <td><<8 18 11 10 -5 -25]]<br /> </td> <td>[<1 1 1 2|, <0 8 18 11]]<br /> </td> <td>243/245 2400/2401<br /> </td> </tr> <tr> <td>würschmidt<br /> </td> <td>4.578<br /> </td> <td>2.908<br /> </td> <td>50.776<br /> </td> <td><<8 1 18 -17 6 39]]<br /> </td> <td>[<1 7 3 15|, <0 -8 -1 -18]]<br /> </td> <td>224/225 8748/8575<br /> </td> </tr> <tr> <td>superkleismic<br /> </td> <td>4.62<br /> </td> <td>2.6950<br /> </td> <td>47.932<br /> </td> <td><<9 10 -3 -5 -30 -35]]<br /> </td> <td>[<1 4 5 2|, <0 -9 -10 3]]<br /> </td> <td>875/864 1029/1024<br /> </td> </tr> <tr> <td>catakleismic<br /> </td> <td>4.684<br /> </td> <td>1.176<br /> </td> <td>21.501<br /> </td> <td><<6 5 22 -6 18 37]]<br /> </td> <td>[<1 0 1 -3|, <0 6 5 22]]<br /> </td> <td>225/224 4375/4374<br /> </td> </tr> <tr> <td>alicorn<br /> </td> <td>4.847<br /> </td> <td>2.09<br /> </td> <td>40.913<br /> </td> <td><<8 13 23 2 14 17]]<br /> </td> <td>[<1 2 3 4|, <0 -8 -13 -23]]<br /> </td> <td>126/125 10976/10935<br /> </td> </tr> <tr> <td>rodan<br /> </td> <td>5.012<br /> </td> <td>1.773<br /> </td> <td>37.112<br /> </td> <td><<3 17 -1 20 -10 -50]]<br /> </td> <td>[<1 1 -1 3|, <0 3 17 -1]]<br /> </td> <td>245/243 1024/1029<br /> </td> </tr> <tr> <td>shrutar<br /> </td> <td>5.101<br /> </td> <td>2.185<br /> </td> <td>47.377<br /> </td> <td><<4 -8 14 -22 11 55]]<br /> </td> <td>[<2 1 9 -2|, <0 2 -4 7]]<br /> </td> <td>245/243 2048/2025<br /> </td> </tr> <tr> <td>tritonic<br /> </td> <td>5.291<br /> </td> <td>2.039<br /> </td> <td>47.578<br /> </td> <td><<5 -11 -12 -29 -33 3]]<br /> </td> <td>[<1 4 -3 -3|, <0 -5 11 12]]<br /> </td> <td>225/224 50421/50000<br /> </td> </tr> <tr> <td>quartonic<br /> </td> <td>5.395<br /> </td> <td>1.758<br /> </td> <td>42.632<br /> </td> <td><<11 18 5 3 -23 -39]]<br /> </td> <td>[<1 2 3 3|, <0 -11 -18 -5]]<br /> </td> <td>1728/1715 4000/3969<br /> </td> </tr> <tr> <td>clyde<br /> </td> <td>5.61<br /> </td> <td>1.802<br /> </td> <td>47.261<br /> </td> <td><<12 10 25 -12 6 30]]<br /> </td> <td>[<1 6 6 12|, <0 -12 -10 -25]]<br /> </td> <td>245/243 3136/3125<br /> </td> </tr> <tr> <td>septimin<br /> </td> <td>5.874<br /> </td> <td>1.896<br /> </td> <td>54.502<br /> </td> <td><<11 -6 10 -35 -15 40]]<br /> </td> <td>[<1 4 1 5|, <0 -11 6 -10]]<br /> </td> <td>225/224 84035/82944<br /> </td> </tr> <tr> <td>echidna<br /> </td> <td>5.925<br /> </td> <td>1.984<br /> </td> <td>58.033<br /> </td> <td><<6 -12 10 -33 -1 57]]<br /> </td> <td>[<2 1 9 2|, <0 3 -6 5]]<br /> </td> <td>1728/1715 2048/2025<br /> </td> </tr> <tr> <td>compton<br /> </td> <td>5.927<br /> </td> <td>1.219<br /> </td> <td>35.686<br /> </td> <td><<0 12 24 19 38 22]]<br /> </td> <td>[<12 19 0 -22|, <0 0 1 2]]<br /> </td> <td>225/224 250047/250000<br /> </td> </tr> <tr> <td>bidia<br /> </td> <td>5.94<br /> </td> <td>1.921<br /> </td> <td>56.474<br /> </td> <td><<4 -8 -20 -22 -43 -24]]<br /> </td> <td>[<4 0 22 43|, <0 1 -2 -5]]<br /> </td> <td>2048/2025 3136/3125<br /> </td> </tr> <tr> <td>wizard<br /> </td> <td>6.372<br /> </td> <td>1.207<br /> </td> <td>40.846<br /> </td> <td><<12 -2 20 -31 -2 52]]<br /> </td> <td>[<2 1 5 2|, <0 6 -1 10]]<br /> </td> <td>225/224 118098/117649<br /> </td> </tr> <tr> <td>buzzard<br /> </td> <td>6.42<br /> </td> <td>1.396<br /> </td> <td>47.963<br /> </td> <td><<4 21 -3 24 -16 -66]]<br /> </td> <td>[<1 0 -6 4|, <0 4 21 -3]]<br /> </td> <td>1728/1715 5120/5103<br /> </td> </tr> <tr> <td>semisept<br /> </td> <td>6.499<br /> </td> <td>1.434<br /> </td> <td>50.472<br /> </td> <td><<17 6 15 -30 -24 18]]<br /> </td> <td>[<1 12 6 12|, <0 -17 -6 -15]]<br /> </td> <td>1728/1715 3136/3125<br /> </td> </tr> <tr> <td>hemiwürschmidt<br /> </td> <td>6.598<br /> </td> <td>.5600<br /> </td> <td>20.307<br /> </td> <td><<16 2 5 -34 -37 6]]<br /> </td> <td>[<1 15 4 7|, <0 -16 -2 -5]]<br /> </td> <td>2401/2400 3136/3125<br /> </td> </tr> <tr> <td>hemikleismic<br /> </td> <td>6.704<br /> </td> <td>1.39<br /> </td> <td>52.054<br /> </td> <td><<12 10 -9 -12 -48 -49]]<br /> </td> <td>[<1 0 1 4|, <0 12 10 -9]]<br /> </td> <td>4000/3969 6144/6125<br /> </td> </tr> <tr> <td><br /> </td> <td>6.706<br /> </td> <td>1.58<br /> </td> <td>59.218<br /> </td> <td><<7 9 32 -2 31 49]]<br /> </td> <td>[<1 6 8 23|, <0 -7 -9 -32]]<br /> </td> <td>225/224 78732/78125<br /> </td> </tr> <tr> <td>hemififths<br /> </td> <td>6.812<br /> </td> <td>.575<br /> </td> <td>22.243<br /> </td> <td><<2 25 13 35 15 -40]]<br /> </td> <td>[<1 1 -5 -1|, <0 2 25 13]]<br /> </td> <td>2401/2400 5120/5103<br /> </td> </tr> <tr> <td><br /> </td> <td>7.022<br /> </td> <td>1.40<br /> </td> <td>57.514<br /> </td> <td><<7 26 25 25 20 -15]]<br /> </td> <td>[<1 5 15 15|, <0 -7 -26 -25]]<br /> </td> <td>4000/3969 16875/16807<br /> </td> </tr> <tr> <td>amity<br /> </td> <td>7.127<br /> </td> <td>.559<br /> </td> <td>23.649<br /> </td> <td><<5 13 -17 9 -41 -76]]<br /> </td> <td>[<1 3 6 -2|, <0 -5 -13 17]]<br /> </td> <td>4375/4374 6144/6125<br /> </td> </tr> <tr> <td><br /> </td> <td>7.243<br /> </td> <td>1.26<br /> </td> <td>55.078<br /> </td> <td><<7 -15 -16 -40 -45 5]]<br /> </td> <td>[<1 5 -5 -5|, <0 -7 15 16]]<br /> </td> <td>225/224 2500000/2470629<br /> </td> </tr> <tr> <td>parakleismic<br /> </td> <td>7.343<br /> </td> <td>.610<br /> </td> <td>27.431<br /> </td> <td><<13 14 35 -8 19 42]]<br /> </td> <td>[<1 5 6 12|, <0 -13 -14 -35]]<br /> </td> <td>3136/3125 4375/4374<br /> </td> </tr> <tr> <td>slender<br /> </td> <td>7.359<br /> </td> <td>1.261<br /> </td> <td>56.934<br /> </td> <td><<13 -10 6 -46 -27 42]]<br /> </td> <td>[<1 2 2 3|, <0 -13 10 -6]]<br /> </td> <td>225/224 589824/588245<br /> </td> </tr> <tr> <td>hemithirds<br /> </td> <td>7.385<br /> </td> <td>.974<br /> </td> <td>44.284<br /> </td> <td><<15 -2 -5 -38 -50 -6]]<br /> </td> <td>[<1 4 2 2|, <0 -15 2 5]]<br /> </td> <td>1029/1024 3136/3125<br /> </td> </tr> <tr> <td>unidec<br /> </td> <td>7.662<br /> </td> <td>.785<br /> </td> <td>38.393<br /> </td> <td><<12 22 -4 7 -40 -71]]<br /> </td> <td>[<2 5 8 5|, <0 -6 -11 2]]<br /> </td> <td>1029/1024 4375/4374<br /> </td> </tr> <tr> <td>ennealimmal<br /> </td> <td>7.714<br /> </td> <td>.0730<br /> </td> <td>3.610<br /> </td> <td><<18 27 18 1 -22 -34]]<br /> </td> <td>[<9 1 1 12|, <0 2 3 2]]<br /> </td> <td>2401/2400 4375/4374<br /> </td> </tr> <tr> <td>guiron<br /> </td> <td>7.795<br /> </td> <td>.939<br /> </td> <td>47.544<br /> </td> <td><<3 -24 -1 -45 -10 65]]<br /> </td> <td>[<1 1 7 3|, <0 3 -24 -1]]<br /> </td> <td>1029/1024 10976/10935<br /> </td> </tr> <tr> <td>misty<br /> </td> <td>7.993<br /> </td> <td>.691<br /> </td> <td>36.802<br /> </td> <td><<3 -12 -30 -26 -56 -36]]<br /> </td> <td>[<3 0 26 56|, <0 1 -4 -10]]<br /> </td> <td>3136/3125 5120/5103<br /> </td> </tr> <tr> <td>hendecatonic<br /> </td> <td>8.442<br /> </td> <td>.692<br /> </td> <td>41.081<br /> </td> <td><<11 -11 22 -43 4 82]]<br /> </td> <td>[<11 0 43 -4|, <0 1 -1 2]]<br /> </td> <td>6144/6125 10976/10935<br /> </td> </tr> <tr> <td>harry<br /> </td> <td>8.457<br /> </td> <td>.572<br /> </td> <td>34.077<br /> </td> <td><<12 34 20 26 -2 -49]]<br /> </td> <td>[<2 4 7 7|, <0 -6 -17 -10]]<br /> </td> <td>2401/2400 19683/19600<br /> </td> </tr> <tr> <td><br /> </td> <td>8.57<br /> </td> <td>.924<br /> </td> <td>56.557<br /> </td> <td><<6 29 -2 32 -20 -86]]<br /> </td> <td>[<1 4 14 2|, <0 -6 -29 2]]<br /> </td> <td>1029/1024 19683/19600<br /> </td> </tr> <tr> <td>tritikleismic<br /> </td> <td>8.707<br /> </td> <td>.8920<br /> </td> <td>56.337<br /> </td> <td><<18 15 -6 -18 -60 -56]]<br /> </td> <td>[<3 0 3 10|, <0 6 5 -2]]<br /> </td> <td>1029/1024 15625/15552<br /> </td> </tr> <tr> <td>quadritikleismic<br /> </td> <td>8.908<br /> </td> <td>.593<br /> </td> <td>39.231<br /> </td> <td><<24 20 16 -24 -42 -19]]<br /> </td> <td>[<4 0 4 7|, <0 6 5 4]]<br /> </td> <td>2401/2400 15625/15552<br /> </td> </tr> <tr> <td>hemischis<br /> </td> <td>9.155<br /> </td> <td>.656<br /> </td> <td>45.817<br /> </td> <td><<2 -16 25 -30 34 103]]<br /> </td> <td>[<1 0 15 -17|, <0 2 -16 25]]<br /> </td> <td>6144/6125 19683/19600<br /> </td> </tr> <tr> <td><br /> </td> <td>9.279<br /> </td> <td>.757<br /> </td> <td>54.303<br /> </td> <td><<14 18 45 -4 32 54]]<br /> </td> <td>[<1 6 8 17|, <0 -14 -18 -45]]<br /> </td> <td>3136/3125 19683/19600<br /> </td> </tr> <tr> <td>countercata<br /> </td> <td>9.466<br /> </td> <td>.698<br /> </td> <td>52.128<br /> </td> <td><<6 5 -31 -6 -66 -86]]<br /> </td> <td>[<1 0 1 11|, <0 6 5 -31]]<br /> </td> <td>5103/5120 15625/15552<br /> </td> </tr> <tr> <td>grendel<br /> </td> <td>9.823<br /> </td> <td>.645<br /> </td> <td>51.834<br /> </td> <td><<23 -1 13 -55 -44 33]]<br /> </td> <td>[<1 9 2 7|, <0 -23 1 -13]]<br /> </td> <td>6144/6125 16875/16807<br /> </td> </tr> <tr> <td>kwai<br /> </td> <td>9.844<br /> </td> <td>.675<br /> </td> <td>54.476<br /> </td> <td><<1 33 27 50 40 -30]]<br /> </td> <td>[<1 0 -50 -40|, <0 1 33 27]]<br /> </td> <td>5120/5103 16875/16807<br /> </td> </tr> <tr> <td>hemischismic<br /> </td> <td>10.11<br /> </td> <td>.643<br /> </td> <td>54.744<br /> </td> <td><<2 -16 -40 -30 -69 -48]]<br /> </td> <td>[<2 0 30 69|, <0 1 -8 -20]]<br /> </td> <td>3136/3125 32805/32768<br /> </td> </tr> <tr> <td>sesquiquartififths<br /> </td> <td>10.196<br /> </td> <td>.130<br /> </td> <td>11.244<br /> </td> <td><<4 -32 -15 -60 -35 55 ]]<br /> </td> <td>[<1 1 7 5|, <0 4 -32 -15]]<br /> </td> <td>2400/2401 32805/32768<br /> </td> </tr> <tr> <td>octoid<br /> </td> <td>10.207<br /> </td> <td>.491<br /> </td> <td>42.67<br /> </td> <td><<24 32 40 -5 -4 3]]<br /> </td> <td>[<8 1 3 3|, <0 3 4 5]]<br /> </td> <td>4375/4374 16875/16807<br /> </td> </tr> <tr> <td>tertiaseptal<br /> </td> <td>10.247<br /> </td> <td>.149<br /> </td> <td>12.995<br /> </td> <td><<22 -5 3 -59 -57 21]]<br /> </td> <td>[<1 3 2 3|, <0 -22 5 -3]]<br /> </td> <td>2401/2400 65625/65536<br /> </td> </tr> <tr> <td>mirkat<br /> </td> <td>10.652<br /> </td> <td>.628<br /> </td> <td>59.376<br /> </td> <td><<18 39 42 20 16 -12]]<br /> </td> <td>[<3 2 1 2|, <0 6 13 14]]<br /> </td> <td>16875/16807 19683/19600<br /> </td> </tr> <tr> <td>pontiac<br /> </td> <td>10.787<br /> </td> <td>.146<br /> </td> <td>14.133<br /> </td> <td><<1 -8 39 -15 59 113]]<br /> </td> <td>[<1 0 15 -59|, <0 1 -8 39]]<br /> </td> <td>65625/65536 4374/4375<br /> </td> </tr> <tr> <td>nessafof<br /> </td> <td>10.834<br /> </td> <td>.461<br /> </td> <td>45.048<br /> </td> <td><<21 15 -12 -25 -78 -70]]<br /> </td> <td>[<3 2 5 10|, <0 7 5 -4]]<br /> </td> <td>6144/6125 250047/250000<br /> </td> </tr> <tr> <td><br /> </td> <td>11.375<br /> </td> <td>.533<br /> </td> <td>57.499<br /> </td> <td><<15 39 48 27 34 2]]<br /> </td> <td>[<3 4 5 6|, <0 5 13 16]]<br /> </td> <td>10976/10935 235298/234375<br /> </td> </tr> <tr> <td><br /> </td> <td>11.425<br /> </td> <td>.494<br /> </td> <td>53.76<br /> </td> <td><<7 38 -4 44 -26 -116]]<br /> </td> <td>[<1 3 10 2|, <0 -7 -38 4]]<br /> </td> <td>5103/5120 420175/419904<br /> </td> </tr> <tr> <td><br /> </td> <td>11.446<br /> </td> <td>.531<br /> </td> <td>57.978<br /> </td> <td><<29 16 40 -42 -18 48]]<br /> </td> <td>[<1 1 2 2|, <0 29 16 40]]<br /> </td> <td>3136/3125 420175/419904<br /> </td> </tr> <tr> <td>enneadecal<br /> </td> <td>11.926<br /> </td> <td>.0920<br /> </td> <td>10.954<br /> </td> <td><<19 19 57 -14 37 79]]<br /> </td> <td>[<19 0 14 -37|, <0 1 1 3]]<br /> </td> <td>4375/4374 703125/702464<br /> </td> </tr> <tr> <td><br /> </td> <td>11.986<br /> </td> <td>.495<br /> </td> <td>59.241<br /> </td> <td><<18 -14 30 -64 -3 109]]<br /> </td> <td>[<2 4 4 7|, <0 -9 7 -15]]<br /> </td> <td>6144/6125 118098/117649<br /> </td> </tr> <tr> <td>quinmite<br /> </td> <td>12.636<br /> </td> <td>.281<br /> </td> <td>37.322<br /> </td> <td><<34 29 23 -33 -59 -28]]<br /> </td> <td>[<1 27 24 20|, <0 -34 -29 -23]]<br /> </td> <td>2401/2400 1959552/1953125<br /> </td> </tr> <tr> <td>gamera<br /> </td> <td>12.911<br /> </td> <td>.271<br /> </td> <td>37.648<br /> </td> <td><<23 40 1 10 -63 -110]]<br /> </td> <td>[<1 6 10 3|, <0 -23 -40 -1]]<br /> </td> <td>4375/4374 589824/588245<br /> </td> </tr> <tr> <td><br /> </td> <td>12.973<br /> </td> <td>.324<br /> </td> <td>45.473<br /> </td> <td><<20 52 31 36 -7 -74]]<br /> </td> <td>[<1 3 6 5|, <0 -20 -52 -31]]<br /> </td> <td>2401/2400 1600000/1594323<br /> </td> </tr> <tr> <td><br /> </td> <td>13.269<br /> </td> <td>.377<br /> </td> <td>55.249<br /> </td> <td><<31 41 53 -7 -3 8]]<br /> </td> <td>[<1 21 28 36|, <0 -31 -41 -53]]<br /> </td> <td>4375/4374 235298/234375<br /> </td> </tr> <tr> <td>term<br /> </td> <td>13.877<br /> </td> <td>.124<br /> </td> <td>19.95<br /> </td> <td><<3 -24 -54 -45 -94 -58]]<br /> </td> <td>[<3 0 45 94|, <0 1 -8 -18]]<br /> </td> <td>32805/32768 250000/250047<br /> </td> </tr> <tr> <td>mitonic<br /> </td> <td>14.474<br /> </td> <td>.144<br /> </td> <td>25.184<br /> </td> <td><<17 35 -21 16 -81 -147]]<br /> </td> <td>[<1 16 32 -15|, <0 -17 -35 21]]<br /> </td> <td>4375/4374 2100875/2097152<br /> </td> </tr> <tr> <td><br /> </td> <td>14.679<br /> </td> <td>.144<br /> </td> <td>25.84<br /> </td> <td><<23 -13 42 -74 2 134]]<br /> </td> <td>[<1 11 -3 20|, <0 -23 13 -42]]<br /> </td> <td>65625/65536 420175/419904<br /> </td> </tr> <tr> <td>emmthird<br /> </td> <td>14.897<br /> </td> <td>.0900<br /> </td> <td>16.736<br /> </td> <td><<14 59 33 61 13 -89]]<br /> </td> <td>[<1 11 42 25|, <0 -14 -59 -33]]<br /> </td> <td>2401/2400 14348907/14336000<br /> </td> </tr> <tr> <td><br /> </td> <td>14.948<br /> </td> <td>.182<br /> </td> <td>33.902<br /> </td> <td><<20 -30 -10 -94 -72 61]]<br /> </td> <td>[<10 0 47 36|, <0 2 -3 -1]]<br /> </td> <td>2400/2401 67108864/66976875<br /> </td> </tr> <tr> <td>neptune<br /> </td> <td>15.001<br /> </td> <td>.125<br /> </td> <td>23.427<br /> </td> <td><<40 22 21 -58 -79 -13]]<br /> </td> <td>[<1 21 13 13|, <0 -40 -22 -21]]<br /> </td> <td>2401/2400 48828125/48771072<br /> </td> </tr> <tr> <td>mutt<br /> </td> <td>15.075<br /> </td> <td>.150<br /> </td> <td>28.406<br /> </td> <td><<21 3 -36 -44 -116 -92]]<br /> </td> <td>[<3 5 7 8|, <0 -7 -1 12]]<br /> </td> <td>65625/65536 250047/250000<br /> </td> </tr> <tr> <td>tsaharuk<br /> </td> <td>15.75<br /> </td> <td>.148<br /> </td> <td>30.697<br /> </td> <td><<5 -40 24 -75 24 168]]<br /> </td> <td>[<1 1 7 0|, <0 5 -40 24]]<br /> </td> <td>32805/32768 420175/419904<br /> </td> </tr> <tr> <td><br /> </td> <td>16.64<br /> </td> <td>.0730<br /> </td> <td>16.814<br /> </td> <td><<15 51 72 46 72 24]]<br /> </td> <td>[<3 3 1 0|, <0 5 17 24]]<br /> </td> <td>250047/250000 2460375/2458624<br /> </td> </tr> <tr> <td>quasiorwell<br /> </td> <td>16.766<br /> </td> <td>.153<br /> </td> <td>35.832<br /> </td> <td><<38 -3 8 -93 -94 27]]<br /> </td> <td>[<1 31 0 9|, <0 -38 3 -8]]<br /> </td> <td>2401/2400 29360128/29296875<br /> </td> </tr> <tr> <td>vishnu<br /> </td> <td>16.789<br /> </td> <td>.178<br /> </td> <td>41.912<br /> </td> <td><<14 6 74 -23 78 155]]<br /> </td> <td>[<2 4 5 10|, <0 -7 -3 -37]]<br /> </td> <td>4375/4374 29360128/29296875<br /> </td> </tr> <tr> <td><br /> </td> <td>16.876<br /> </td> <td>.176<br /> </td> <td>41.878<br /> </td> <td><<2 -57 -28 -95 -50 95]]<br /> </td> <td>[<1 1 19 11|, <0 2 -57 -28]]<br /> </td> <td>2401/2400 33554432/33480783<br /> </td> </tr> <tr> <td>supermajor<br /> </td> <td>16.944<br /> </td> <td>.0450<br /> </td> <td>10.836<br /> </td> <td><<37 46 75 -13 15 45]]<br /> </td> <td>[<1 15 19 30|, <0 -37 -46 -75]]<br /> </td> <td>4375/4374 52734375/52706752<br /> </td> </tr> <tr> <td><br /> </td> <td>17.375<br /> </td> <td>.116<br /> </td> <td>29.267<br /> </td> <td><<41 14 60 -73 -20 100]]<br /> </td> <td>[<1 27 11 40|, <0 -41 -14 -60]]<br /> </td> <td>420175/419904 703125/702464<br /> </td> </tr> <tr> <td>vulture<br /> </td> <td>17.675<br /> </td> <td>.142<br /> </td> <td>36.985<br /> </td> <td><<4 21 -56 24 -100 -189]]<br /> </td> <td>[<1 0 -6 25|, <0 4 21 -56]]<br /> </td> <td>4375/4374 33554432/33480783<br /> </td> </tr> <tr> <td><br /> </td> <td>18.931<br /> </td> <td>.148<br /> </td> <td>44.115<br /> </td> <td><<26 -37 -12 -119 -92 76]]<br /> </td> <td>[<1 25 -31 -8|, <0 -26 37 12]]<br /> </td> <td>2401/2400 2152828125/2147483648<br /> </td> </tr> <tr> <td><br /> </td> <td>19.245<br /> </td> <td>.182<br /> </td> <td>56.184<br /> </td> <td><<32 33 92 -22 56 121]]<br /> </td> <td>[<1 10 11 27|, <0 -32 -33 -92]]<br /> </td> <td>4375/4374 2202927104/2197265625<br /> </td> </tr> <tr> <td><br /> </td> <td>19.517<br /> </td> <td>.144<br /> </td> <td>45.66<br /> </td> <td><<39 30 -18 -43 -138 -126]]<br /> </td> <td>[<3 10 11 6|, <0 -13 -10 6]]<br /> </td> <td>250047/250000 2100875/2097152<br /> </td> </tr> <tr> <td><br /> </td> <td>19.87<br /> </td> <td>.175<br /> </td> <td>57.632<br /> </td> <td><<52 56 41 -32 -81 -62]]<br /> </td> <td>[<1 31 34 26|, <0 -52 -56 -41]]<br /> </td> <td>2401/2400 1224440064/1220703125<br /> </td> </tr> <tr> <td><br /> </td> <td>19.992<br /> </td> <td>.133<br /> </td> <td>44.417<br /> </td> <td><<13 67 -6 76 -46 -202]]<br /> </td> <td>[<1 12 56 -2|, <0 -13 -67 6]]<br /> </td> <td>420175/419904 5250987/5242880<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Junk temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Junk temperaments</h1> <table class="wiki_table"> <tr> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Error<br /> </td> <td>Badness<br /> </td> <td>Wedgie<br /> </td> <td>Mapping<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td><br /> </td> <td>.266<br /> </td> <td>400.986<br /> </td> <td>23.561<br /> </td> <td><<0 0 1 0 2 2]]<br /> </td> <td>[<1 2 2 0] [0 0 0 1]]<br /> </td> <td>4/3 3/5<br /> </td> </tr> <tr> <td><br /> </td> <td>.340<br /> </td> <td>252.955<br /> </td> <td>24.334<br /> </td> <td><<0 1 0 2 0 -3]]<br /> </td> <td>[<1 2 0 3|, <0 0 1 0]]<br /> </td> <td>6/7 3/4<br /> </td> </tr> <tr> <td><br /> </td> <td>.367<br /> </td> <td>309.005<br /> </td> <td>34.752<br /> </td> <td><<0 1 1 2 2 0]]<br /> </td> <td>[<1 2 0 0] [0 0 1 1]]<br /> </td> <td>4/3 5/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.373<br /> </td> <td>199.358<br /> </td> <td>23.114<br /> </td> <td><<1 1 1 -1 -1 0]]<br /> </td> <td>[<1 0 11|, <0 1 1 1]]<br /> </td> <td>6/5 5/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.401<br /> </td> <td>168.811<br /> </td> <td>22.624<br /> </td> <td><<1 0 1 -2 -1 2]]<br /> </td> <td>[<1 0 2 1|, <0 1 0 1]]<br /> </td> <td>15/14 6/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.437<br /> </td> <td>223.834<br /> </td> <td>35.689<br /> </td> <td><<1 0 0 -2 -3 0]]<br /> </td> <td>[<1 0 2 3|, <0 1 0 0]]<br /> </td> <td>10/7 5/4<br /> </td> </tr> <tr> <td><br /> </td> <td>.458<br /> </td> <td>152.797<br /> </td> <td>26.72<br /> </td> <td><<1 1 2 -1 0 2]]<br /> </td> <td>[<1 0 1 0|, <0 1 1 2]]<br /> </td> <td>6/5 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.470<br /> </td> <td>135.12<br /> </td> <td>24.843<br /> </td> <td><<1 1 0 -1 -3 -3]]<br /> </td> <td>[<1 0 1 3|, <0 1 1 0]]<br /> </td> <td>6/5 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.508<br /> </td> <td>134.886<br /> </td> <td>29.047<br /> </td> <td><<0 0 2 0 3 5]]<br /> </td> <td>[<2 3 5 0] [0 0 0 1]]<br /> </td> <td>6/5 9/8<br /> </td> </tr> <tr> <td><br /> </td> <td>.517<br /> </td> <td>100.76<br /> </td> <td>22.434<br /> </td> <td><<1 2 1 1 -1 -3]]<br /> </td> <td>[<1 0 -1 1|, <0 1 2 1]]<br /> </td> <td>9/10 6/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.536<br /> </td> <td>159.295<br /> </td> <td>38.111<br /> </td> <td><<1 0 -1 -2 -4 -2]]<br /> </td> <td>[<1 0 2 4|, <0 1 0 -1]]<br /> </td> <td>21/25 4/5<br /> </td> </tr> <tr> <td><br /> </td> <td>.603<br /> </td> <td>180.305<br /> </td> <td>54.612<br /> </td> <td><<1 1 -1 -1 -4 -5]]<br /> </td> <td>[<1 0 1 4|, <0 1 1 -1]]<br /> </td> <td>63/40 6/5<br /> </td> </tr> <tr> <td><br /> </td> <td>.613<br /> </td> <td>126.55<br /> </td> <td>39.612<br /> </td> <td><<0 2 0 3 0 -6]]<br /> </td> <td>[<2 3 0 6|, <0 0 1 0]]<br /> </td> <td>9/7 8/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.631<br /> </td> <td>58.311<br /> </td> <td>19.373<br /> </td> <td><<0 2 2 3 3 -1]]<br /> </td> <td>[<2 3 0 1|, <0 0 1 1]]<br /> </td> <td>20/21 14/15<br /> </td> </tr> <tr> <td><br /> </td> <td>.637<br /> </td> <td>70.842<br /> </td> <td>23.922<br /> </td> <td><<1 -1 0 -4 -3 3]]<br /> </td> <td>[<1 0 4 3|, <0 1 -1 0]]<br /> </td> <td>8/7 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.648<br /> </td> <td>81.437<br /> </td> <td>28.454<br /> </td> <td><<1 2 0 1 -3 -6]]<br /> </td> <td>[<1 0 -1 3|, <0 1 2 0]]<br /> </td> <td>8/7 10/9<br /> </td> </tr> <tr> <td><br /> </td> <td>.649<br /> </td> <td>103.614<br /> </td> <td>36.419<br /> </td> <td><<1 -1 1 -4 -1 5]]<br /> </td> <td>[<1 0 4 1|, <0 1 -1 1]]<br /> </td> <td>6/7 45/56<br /> </td> </tr> <tr> <td><br /> </td> <td>.656<br /> </td> <td>66.836<br /> </td> <td>23.962<br /> </td> <td><<1 2 3 1 2 1]]<br /> </td> <td>[<1 0 -1 -2|, <0 1 2 3]]<br /> </td> <td>14/15 21/25<br /> </td> </tr> <tr> <td><br /> </td> <td>.724<br /> </td> <td>136.735<br /> </td> <td>59.654<br /> </td> <td><<2 2 2 -1 -2 -1]]<br /> </td> <td>[<2 0 1 2|, <0 1 1 1]]<br /> </td> <td>25/21 6/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.736<br /> </td> <td>97.698<br /> </td> <td>44.046<br /> </td> <td><<2 1 2 -3 -2 2]]<br /> </td> <td>[<1 1 2 2|, <0 2 1 2]]<br /> </td> <td>25/28 6/7<br /> </td> </tr> <tr> <td><br /> </td> <td>.736<br /> </td> <td>132.937<br /> </td> <td>59.948<br /> </td> <td><<1 3 2 2 0 -4]]<br /> </td> <td>[<1 0 -2 0|, <0 1 3 2]]<br /> </td> <td>9/7 20/21<br /> </td> </tr> <tr> <td><br /> </td> <td>.770<br /> </td> <td>58.026<br /> </td> <td>28.673<br /> </td> <td><<0 0 3 0 5 7]]<br /> </td> <td>[<3 5 7 0] [0 0 0 1]]<br /> </td> <td>10/9 24/25<br /> </td> </tr> </table> </body></html>