437edo
Theory
437et tempers out 4096000/4084101 and 2401/2400 in the 7-limit; 25165824/25109315, 1835008/1830125, 2621440/2614689, 16384/16335, 151263/151250, 107495424/107421875, 1953125/1948617, 3025/3024, 41503/41472, 766656/765625, 391314/390625, 20614528/20588575 and 644204/643125 in the 11-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.02 | +0.87 | +0.51 | -0.71 | +0.63 | -0.25 | -0.85 | -0.61 | -0.95 | -1.22 | +0.56 |
Relative (%) | +37.1 | +31.7 | +18.6 | -25.7 | +22.8 | -9.2 | -31.1 | -22.1 | -34.4 | -44.3 | +20.3 | |
Steps (reduced) |
693 (256) |
1015 (141) |
1227 (353) |
1385 (74) |
1512 (201) |
1617 (306) |
1707 (396) |
1786 (38) |
1856 (108) |
1919 (171) |
1977 (229) |
Subsets and supersets
437 factors into 19 × 23 with its subset edos 19, and 23. 874edo, which doubles it, gives a good correction to the harmonic 3.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.9 | [-1385 437⟩ | ⟨437 1385] | 0.1114 | 0.1114 | 4.06 |