Catalog of 11-limit rank-2 temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-01-02 22:37:55 UTC.
- The original revision id was 289170883.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This is the result of a search done for 11-limit rank two wedgies starting <<i j k l...|| in the range 0 <= i <= 35, |j| <= 51, |k| <= 62, |l| <= 76; the numbers were taken from the 22-et val. The complexity measure is TE complexity, the error measure is TE error, and the badness measure is 1000 times TE logflat badness, all normalized as described on this wiki. Complexity was cut off below at 0.655 and the rest classified as junk simply because the first listed temperament, with a generator chain of 0 1 2 3 4 5, seemed too amusing to leave out; it was cut off above at 16. The badness figure has an allowed maximum of 33.333. || Name || Complexity || Error ||Badness || Mapping || Commas || || || .655 || 54.775 || 22.549 || [<1 0 -1 -2 -3|, <0 1 2 3 4|] || 10/9 15/14 22/21 || || || .680 || 74.627 || 32.666 || [<3 5 7 0 10|, <0 0 0 1 0|] || 11/9 10/9 16/15 || || || .692 || 73.354 || 33.117 || [<1 0 4 3 7|, <0 1 -1 0 -2|] || 8/7 25/22 15/14 || || || .712 || 47.618 || 22.540 || [<4 6 9 11 0|, <0 0 0 0 1|] || 9/8 35/32 15/14 || || || .718 || 57.4 || 27.551 || [<2 3 0 1 -2|, <0 0 1 1 2|] || 25/22 9/8 15/14 || || || .718 || 46.851 || 22.488 || [<1 1 2 2 3|, <0 2 1 3 2|] || 25/22 12/11 15/14 || || || .727 || 44.826 || 21.957 || [<1 0 4 6 5|, <0 1 -1 -2 -1|] || 11/10 16/15 21/20 || || || .771 || 47.381 || 25.592 || [<3 5 7 0 2|, <0 0 0 1 1|] || 10/9 16/15 22/21 || || || .776 || 45.662 || 24.928 || [<1 0 4 6 2|, <0 1 -1 -2 1|] || 12/11 16/15 21/20 || || || .796 || 38.983 || 22.203 || [<1 0 0 2 1|, <0 2 3 1 3|] || 11/10 27/25 21/20 || || || .807 || 41.497 || 24.184 || [<1 0 0 2 2|, <0 2 3 1 2|] || 12/11 27/25 21/20 || || || .832 || 38.874 || 23.823 || [<1 0 4 -2 2|, <0 1 -1 3 1|] || 12/11 16/15 28/27 || || || .833 || 47.271 || 29.071 || [<1 1 2 3 3|, <0 2 1 -1 1|] || 11/10 21/20 25/24 || || || .854 || 30.986 || 19.854 || [<1 1 2 2 2|, <0 2 1 3 5|] || 15/14 22/21 25/24 || || || .905 || 43.667 || 30.795 || [<1 0 4 -2 5|, <0 1 -1 3 -1|] || 11/10 16/15 28/27 || || || .923 || 33.964 || 24.785 || [<5 8 12 14 0|, <0 0 0 0 1|] || 27/25 16/15 21/20 || || || .931 || 43.645 || 32.259 || [<1 0 3 2 1|, <0 2 -1 1 3|] || 35/32 15/14 22/21 || || || .979 || 40.847 || 32.831 || [<1 0 4 6 10|, <0 1 -1 -2 -4|] || 16/15 35/33 21/20 || || || .986 || 25.28 || 20.589 || [<1 0 4 -2 -3|, <0 1 -1 3 4|] || 16/15 22/21 28/27 || || || 1.016 || 29.191 || 24.988 || [<1 1 2 3 4|, <0 2 1 -1 -2|] || 21/20 25/24 33/32 || || || 1.023 || 30.999 || 26.828 || [<1 0 7 6 5|, <0 1 -3 -2 -1|] || 15/14 22/21 33/32 || || || 1.042 || 27.464 || 24.506 || [<1 0 -4 -2 -6|, <0 1 4 3 6|] || 35/33 21/20 28/27 || || || 1.067 || 29.219 || 27.114 || [<1 1 2 2 4|, <0 2 1 3 -2|] || 15/14 25/24 33/32 || || || 1.087 || 26.805 || 25.660 || [<1 1 2 3 2|, <0 2 1 -1 5|] || 21/20 25/24 45/44 || || || 1.138 || 24.359 || 25.167 || [<1 0 -4 -2 5|, <0 1 4 3 -1|] || 21/20 28/27 55/54 || || || 1.138 || 22.068 || 22.799 || [<1 0 0 2 -2|, <0 2 3 1 7|] || 27/25 21/20 45/44 || || || 1.142 || 21.771 || 22.649 || [<1 0 0 2 5|, <0 2 3 1 -2|] || 27/25 21/20 99/98 || || || 1.148 || 30.989 || 32.521 || [<1 0 -4 -5 -6|, <0 1 4 5 6|] || 15/14 22/21 125/121 || || || 1.196 || 19.922 || 22.366 || [<1 1 2 1 2|, <0 2 1 6 5|] || 35/33 25/24 28/27 || || || 1.208 || 25.57 || 29.193 || [<2 0 8 9 7|, <0 1 -1 -1 0|] || 16/15 22/21 50/49 || || || 1.226 || 19.454 || 22.753 || [<1 0 7 9 5|, <0 1 -3 -4 -1|] || 21/20 33/32 45/44 || || || 1.258 || 23.058 || 28.153 || [<1 0 4 -2 10|, <0 1 -1 3 -4|] || 16/15 28/27 77/75 || || || 1.335 || 19.86 || 26.790 || [<1 2 3 3 4|, <0 -3 -5 -1 -4|] || 22/21 80/77 36/35 || || || 1.34 || 19.265 || 26.141 || [<1 0 -4 6 5|, <0 1 4 -2 -1|] || 22/21 33/32 36/35 || || || 1.358 || 22.998 || 31.934 || [<5 8 0 14 17|, <0 0 1 0 0|] || 22/21 28/27 33/32 || || || 1.415 || 18.282 || 27.164 || [<4 0 3 5 1|, <0 1 1 1 2|] || 22/21 36/35 50/49 || || || 1.431 || 20.956 || 31.719 || [<1 1 2 4 4|, <0 2 1 -4 -2|] || 22/21 25/24 33/32 || || || 1.443 || 20.107 || 30.883 || [<5 8 0 14 6|, <0 0 1 0 1|] || 35/33 28/27 49/48 || || || 1.461 || 20.67 || 32.385 || [<2 0 3 4 7|, <0 2 1 1 0|] || 35/33 25/24 49/48 || || || 1.495 || 19.317 || 31.468 || [<2 0 -5 -4 -6|, <0 1 3 3 4|] || 22/21 28/27 50/49 || || || 1.50 || 19.693 || 32.239 || [<1 1 2 1 4|, <0 2 1 6 -2|] || 25/24 28/27 33/32 || || August || 1.506 || 12.245 || 20.191 || [<3 0 7 -1 1|, <0 1 0 2 2|] || 36/35 45/44 56/55 || || Domineering || 1.523 || 13.075 || 21.978 || [<1 0 -4 6 -6|, <0 1 4 -2 6|] || 36/35 45/44 64/63 || || Septimal || 1.564 || 13.396 || 23.524 || [<7 11 16 0 24|, <0 0 0 1 0|] || 25/24 33/32 45/44 || || Diminished || 1.582 || 12.367 || 22.132 || [<4 0 3 5 14|, <0 1 1 1 0|] || 36/35 50/49 56/55 || || Armodue || 1.603 || 14.879 || 27.211 || [<1 0 7 -5 5|, <0 1 -3 5 -1|] || 33/32 36/35 45/44 || || Dichotic || 1.63 || 16.311 || 30.680 || [<1 1 2 4 2|, <0 2 1 -4 5|] || 25/24 45/44 64/63 || || Opossum || 1.692 || 11.146 || 22.325 || [<1 2 3 4 4|, <0 -3 -5 -9 -4|] || 28/27 77/75 55/54 || || Octokaidecal || 1.698 || 15.008 || 30.235 || [<2 0 -5 -4 7|, <0 1 3 3 0|] || 28/27 50/49 55/54 || || Pajaric || 1.722 || 11.548 || 23.798 || [<2 0 11 12 7|, <0 1 -2 -2 0|] || 45/44 50/49 56/55 || || Progression || 1.749 || 12.314 || 26.050 || [<1 1 2 2 3|, <0 5 3 7 4|] || 36/35 77/75 56/55 || || Decimal || 1.751 || 12.599 || 26.712 || [<2 0 3 4 -1|, <0 2 1 1 5|] || 25/24 45/44 49/48 || || Blacksmith || 1.825 || 10.85 || 24.641 || [<5 8 0 14 29|, <0 0 1 0 -1|] || 28/27 49/48 55/54 || || Demolished || 1.831 || 11.635 || 26.574 || [<4 0 3 5 -5|, <0 1 1 1 3|] || 36/35 45/44 50/49 || || Dominant || 1.864 || 10.279 || 24.180 || [<1 0 -4 6 13|, <0 1 4 -2 -6|] || 36/35 56/55 64/63 || || Decimated || 1.886 || 13.109 || 31.456 || [<2 0 3 4 10|, <0 2 1 1 -2|] || 25/24 33/32 49/48 || || Meanenneadecal || 1.918 || 8.68 || 21.423 || [<1 0 -4 -13 -6|, <0 1 4 10 6|] || 45/44 56/55 81/80 || || Sidi || 1.958 || 12.902 || 32.957 || [<1 3 3 6 7|, <0 -4 -2 -9 -10|] || 25/24 45/44 99/98 || || Ferrier || 1.993 || 11.103 || 29.200 || [<5 8 0 14 -6|, <0 0 1 0 2|] || 28/27 77/75 49/48 || || Superpelog || 2.016 || 10.64 || 28.535 || [<1 0 7 2 5|, <0 2 -6 1 -2|] || 33/32 45/44 99/98 || || Negri || 2.038 || 9.594 || 26.190 || [<1 2 2 3 4|, <0 -4 3 -2 -5|] || 45/44 49/48 56/55 || || Inflated || 2.102 || 10.843 || 31.171 || [<3 0 7 -6 -4|, <0 1 0 3 3|] || 28/27 128/125 55/54 || || Injera || 2.153 || 7.728 || 23.124 || [<2 0 -8 -7 -12|, <0 1 4 4 6|] || 45/44 50/49 99/98 || || Negric || 2.198 || 9.886 || 30.617 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 33/32 77/75 49/48 || || Triforce || 2.201 || 8.427 || 26.152 || [<3 0 7 6 8|, <0 2 0 1 1|] || 77/75 128/125 56/55 || || Duodecim || 2.201 || 9.839 || 30.536 || [<12 19 28 34 0|, <0 0 0 0 1|] || 36/35 50/49 64/63 || || Meanundeci || 2.204 || 10.143 || 31.539 || [<1 0 -4 -13 5|, <0 1 4 10 -1|] || 33/32 77/75 55/54 || || Semafour || 2.212 || 9.111 || 28.510 || [<1 0 -4 2 5|, <0 2 8 1 -2|] || 33/32 49/48 55/54 || || Augene || 2.286 || 5.932 || 19.613 || [<3 0 7 18 20|, <0 1 0 -2 -2|] || 56/55 64/63 100/99 || || Godzilla || 2.343 || 8.404 || 28.947 || [<1 0 -4 2 -6|, <0 2 8 1 12|] || 45/44 49/48 81/80 || || Darjeeling || 2.347 || 8.002 || 27.648 || [<1 0 1 2 0|, <0 6 5 3 13|] || 77/75 49/48 55/54 || || Progress || 2.399 || 8.662 || 31.036 || [<1 0 5 6 4|, <0 3 -5 -6 -1|] || 77/75 56/55 64/63 || || Hedgehog || 2.439 || 6.273 || 23.095 || [<2 1 1 2 4|, <0 3 5 5 4|] || 50/49 55/54 99/98 || || Keemun || 2.468 || 7.298 || 27.410 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 49/48 56/55 100/99 || || Porcupine || 2.478 || 5.703 || 21.562 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 55/54 64/63 100/99 || || Pajara || 2.543 || 5.151 || 20.343 || [<2 0 11 12 26|, <0 1 -2 -2 -6|] || 50/49 99/98 176/175 || || Nautilus || 2.548 || 6.568 || 26.023 || [<1 2 3 3 4|, <0 -6 -10 -3 -8|] || 49/48 55/54 245/242 || || Pajarous || 2.718 || 6.427 || 28.349 || [<2 0 11 12 -9|, <0 1 -2 -2 5|] || 50/49 55/54 64/63 || || Telepathy || 2.864 || 5.631 || 27.109 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 55/54 99/98 176/175 || || Sensis || 2.98 || 5.578 || 28.680 || [<1 6 8 11 6|, <0 -7 -9 -13 -4|] || 56/55 100/99 245/243 || || Suprapyth || 3.011 || 6.264 || 32.768 || [<1 0 -12 6 13|, <0 1 9 -2 -6|] || 55/54 64/63 99/98 || || Porky || 3.02 || 5.186 || 27.268 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 55/54 100/99 225/224 || || Meantone || 3.031 || 3.218 || 17.027 || [<1 0 -4 -13 -25|, <0 1 4 10 18|] || 81/80 99/98 126/125 || || "Ringo"? || 3.126 || 5.902 || 32.863 || [<1 1 5 4 2|, <0 2 -9 -4 5|] || 56/55 64/63 540/539 || || Orwell || 3.242 || 2.574 || 15.231 || [<1 0 3 1 3|, <0 7 -3 8 2|] || 99/98 121/120 176/175 || || Doublewide || 3.407 || 4.988 || 32.058 || [<2 1 3 4 8|, <0 4 3 3 -2|] || 50/49 875/864 99/98 || || Superpyth || 3.41 || 3.88 || 24.976 || [<1 0 -12 6 -22|, <0 1 9 -2 16|] || 64/63 100/99 245/243 || || Squares || 3.486 || 3.24 || 21.636 || [<1 3 8 6 7|, <0 -4 -16 -9 -10|] || 81/80 99/98 121/120 || || Quasisupra || 3.49 || 4.812 || 32.203 || [<1 0 23 6 13|, <0 1 -13 -2 -6|] || 64/63 99/98 121/120 || || Valentine || 3.651 || 2.313 || 16.687 || [<1 1 2 3 3|, <0 9 5 -3 7|] || 121/120 126/125 176/175 || || Magic || 3.715 || 2.741 || 20.352 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 100/99 245/243 225/224 || || Meanpop || 3.82 || 2.77 || 21.543 || [<1 0 -4 -13 24|, <0 1 4 10 -13|] || 81/80 126/125 540/539 || || Mohajira || 3.863 || 3.288 || 26.064 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 81/80 121/120 176/175 || || Cassandra || 3.897 || 2.929 || 23.556 || [<1 0 15 25 32|, <0 1 -8 -14 -18|] || 245/242 100/99 225/224 || || Nusecond || 3.927 || 3.146 || 25.621 || [<1 3 4 5 5|, <0 -11 -13 -17 -12|] || 99/98 121/120 126/125 || || Migration || 3.935 || 3.123 || 25.516 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 81/80 121/120 126/125 || || Mothra || 3.99 || 3.066 || 25.642 || [<1 1 0 3 5|, <0 3 12 -1 -8|] || 81/80 99/98 385/384 || || Octacot || 4.07 || 2.785 || 24.078 || [<1 1 1 2 2|, <0 8 18 11 20|] || 245/242 100/99 243/242 || || Myna || 4.127 || 1.903 || 16.842 || [<1 9 9 8 22|, <0 -10 -9 -7 -25|] || 126/125 176/175 243/242 || || Superkleismic || 4.137 || 2.888 || 25.659 || [<1 4 5 2 4|, <0 -9 -10 3 -2|] || 245/242 100/99 385/384 || || Würschmidt || 4.344 || 2.533 || 24.413 || [<1 7 3 15 17|, <0 -8 -1 -18 -20|] || 99/98 176/175 243/242 || || Miracle || 4.405 || 1.083 || 10.684 || [<1 1 3 3 2|, <0 6 -7 -2 15|] || 225/224 385/384 441/440 || || Mosura || 4.411 || 3.17 || 31.334 || [<1 1 0 3 -1|, <0 3 12 -1 23|] || 81/80 1029/1024 540/539 || || Sensus || 4.503 || 2.882 || 29.486 || [<1 6 8 11 23|, <0 -7 -9 -13 -31|] || 245/243 126/125 176/175 || || Shrutar || 4.53 || 2.563 || 26.489 || [<2 1 9 -2 8|, <0 2 -4 7 -1|] || 121/120 245/243 176/175 || || || 4.531 || 3.187 || 32.946 || [<1 1 3 3 5|, <0 6 -7 -2 -16|] || 99/98 176/175 1029/1024 || || Tritonic || 4.596 || 2.234 || 23.659 || [<1 4 -3 -3 2|, <0 -5 11 12 3|] || 121/120 225/224 441/440 || || Bunya || 4.833 || 2.722 || 31.332 || [<1 1 1 -1 2|, <0 4 9 26 10|] || 100/99 225/224 243/242 || || Diaschismic || 5.048 || 2.023 || 25.034 || [<2 0 11 31 45|, <0 1 -2 -8 -12|] || 126/125 5488/5445 176/175 || || Septimin || 5.089 || 2.496 || 31.309 || [<1 4 1 5 5|, <0 -11 6 -10 -7|] || 2401/2376 225/224 385/384 || || Witchcraft || 5.419 || 2.204 || 30.706 || [<1 0 2 -1 -7|, <0 5 1 12 33|] || 245/243 225/224 441/440 || || Thuja || 5.622 || 2.233 || 33.078 || [<1 8 5 -2 4|, <0 -12 -5 9 -1|] || 1344/1331 126/125 176/175 || || Hemiwur || 5.723 || 1.918 || 29.270 || [<1 15 4 7 11|, <0 -16 -2 -5 -9|] || 121/120 176/175 1375/1372 || || Rodan || 5.754 || 1.50 || 23.093 || [<1 1 -1 3 6|, <0 3 17 -1 -13|] || 245/243 385/384 441/440 || || Echidna || 5.898 || 1.62 || 25.987 || [<2 1 9 2 12|, <0 3 -6 5 -7|] || 176/175 896/891 540/539 || || Semisept || 5.969 || 1.373 || 22.476 || [<1 12 6 12 20|, <0 -17 -6 -15 -27|] || 1331/1323 176/175 540/539 || || || 6.006 || 1.901 || 31.438 || [<1 0 3 1 -4|, <0 7 -3 8 33|] || 1728/1715 225/224 441/440 || || Hemififths || 6.148 || 1.367 || 23.498 || [<1 1 -5 -1 2|, <0 2 25 13 5|] || 896/891 243/242 441/440 || || Garibaldi || 6.365 || 1.504 || 27.396 || [<1 0 15 25 -33|, <0 1 -8 -14 23|] || 2200/2187 225/224 385/384 || || Wizard || 6.421 || 1.003 || 18.539 || [<2 1 5 2 8|, <0 6 -1 10 -3|] || 225/224 385/384 4000/3993 || || Slender || 6.727 || 1.269 || 25.342 || [<1 2 2 3 4|, <0 -13 10 -6 -17|] || 1331/1323 225/224 385/384 || || Compton || 6.767 || 1.102 || 22.235 || [<12 19 0 -22 -42|, <0 0 1 2 3|] || 225/224 4375/4356 441/440 || || Hemithirds || 7.04 || .882 || 19.003 || [<1 4 2 2 7|, <0 -15 2 5 -22|] || 3136/3125 385/384 441/440 || || Catakleismic || 7.254 || .965 || 21.849 || [<1 0 1 -3 9|, <0 6 5 22 -21|] || 225/224 385/384 4375/4374 || || Harry || 7.373 || .682 || 15.867 || [<2 4 7 7 9|, <0 -6 -17 -10 -15|] || 243/242 441/440 4000/3993 || || Pluto || 7.524 || 1.24 || 29.844 || [<1 5 15 15 2|, <0 -7 -26 -25 3|] || 896/891 1375/1372 540/539 || || Unidec || 7.532 || .642 || 15.479 || [<2 5 8 5 6|, <0 -6 -11 2 3|] || 385/384 441/440 12005/11979 || || Ennealimmic || 7.578 || .835 || 20.347 || [<9 1 1 12 -2|, <0 2 3 2 5|] || 4375/4356 243/242 441/440 || || Tritikleismic || 7.587 || .792 || 19.333 || [<3 0 3 10 8|, <0 6 5 -2 3|] || 385/384 441/440 4000/3993 || || Hemiwürschmidt || 7.793 || .825 || 21.069 || [<1 15 4 7 37|, <0 -16 -2 -5 -40|] || 243/242 3136/3125 441/440 || || Marvolo || 7.935 || 1.101 || 28.965 || [<1 2 1 1 2|, <0 -6 19 26 21|] || 225/224 441/440 4000/3993 || || Bikleismic || 8.191 || 1.057 || 29.319 || [<2 0 2 -6 -1|, <0 6 5 22 15|] || 225/224 4375/4356 243/242 || || || 8.212 || 1.092 || 30.422 || [<1 0 1 -3 -10|, <0 6 5 22 51|] || 225/224 441/440 4375/4374 || || || 8.286 || 1.076 || 30.426 || [<9 0 28 11 24|, <0 2 -1 2 1|] || 225/224 385/384 12005/11979 || || Marvo || 8.731 || 1.027 || 31.685 || [<1 5 12 29 12|, <0 -6 -17 -46 -15|] || 225/224 243/242 4000/3993 || || Octoid || 9.17 || .421 || 14.097 || [<8 1 3 3 16|, <0 3 4 5 3|] || 1375/1372 540/539 4000/3993 || || || 9.182 || .899 || 30.171 || [<1 3 2 3 5|, <0 -22 5 -3 -24|] || 1331/1323 385/384 1375/1372 || || Guiron || 9.377 || .767 || 26.648 || [<1 1 7 3 -2|, <0 3 -24 -1 28|] || 10976/10935 385/384 441/440 || || Neominor || 9.493 || .788 || 27.959 || [<1 3 12 8 7|, <0 -6 -41 -22 -15|] || 243/242 35937/35840 441/440 || || Grendel || 9.729 || .537 || 19.845 || [<1 9 2 7 17|, <0 -23 1 -13 -42|] || 1375/1372 540/539 5632/5625 || || || 9.733 || .770 || 28.467 || [<1 4 14 2 -5|, <0 -6 -29 2 21|] || 19683/19600 385/384 441/440 || || Sqrtphi || 9.756 || .687 || 25.515 || [<1 12 11 16 17|, <0 -30 -25 -38 -39|] || 4375/4356 1375/1372 540/539 || || || 9.831 || .810 || 30.461 || [<2 3 4 5 6|, <0 5 19 18 27|] || 3388/3375 8019/8000 441/440 || || Sesquart || 9.891 || .772 || 29.306 || [<1 1 7 5 2|, <0 4 -32 -15 10|] || 243/242 16384/16335 441/440 || || Quadritikleismic || 10.315 || .575 || 23.406 || [<4 0 4 7 17|, <0 6 5 4 -3|] || 385/384 1375/1372 9801/9800 || || Mirkat || 10.575 || .521 || 22.126 || [<3 2 1 2 9|, <0 6 13 14 3|] || 8019/8000 1375/1372 540/539 || || Bisupermajor || 10.578 || .755 || 32.080 || [<2 1 6 1 8|, <0 8 -5 17 -4|] || 3388/3375 385/384 9801/9800 || || Cotritone || 10.735 || .740 || 32.225 || [<1 17 9 10 5|, <0 -30 -13 -14 -3|] || 385/384 1375/1372 4000/3993 || || Kwai || 11.134 || .567 || 26.219 || [<1 0 -50 -40 32|, <0 1 33 27 -18|] || 16384/16335 1375/1372 540/539 || || || 11.163 || .642 || 29.807 || [<1 7 0 1 13|, <0 -21 9 7 -37|] || 385/384 441/440 456533/455625 || || Supers || 11.476 || .580 || 28.240 || [<2 1 -12 2 -9|, <0 3 23 5 22|] || 5120/5103 540/539 4000/3993 || || || 11.678 || .621 || 31.123 || [<9 1 1 12 51|, <0 2 3 2 -3|] || 385/384 1375/1372 4375/4374 || || Bischismic || 11.743 || .557 || 28.160 || [<2 0 30 69 102|, <0 1 -8 -20 -30|] || 3136/3125 8019/8000 441/440 || || || 12.086 || .464 || 24.619 || [<2 4 4 7 6|, <0 -9 7 -15 10|] || 540/539 4000/3993 5632/5625 || || || 12.537 || .559 || 31.506 || [<1 3 6 -2 21|, <0 -5 -13 17 -62|] || 5120/5103 540/539 5632/5625 || || Quincy || 12.684 || .537 || 30.875 || [<1 2 3 3 4|, <0 -30 -49 -14 -39|] || 441/440 4000/3993 41503/41472 || || Hemiamity || 13.714 || .478 || 31.307 || [<2 1 -1 13 13|, <0 5 13 -17 -14|] || 5120/5103 3025/3024 4375/4374 || || || 13.875 || .414 || 27.621 || [<1 10 0 6 20|, <0 -29 8 -11 -57|] || 1375/1372 540/539 65625/65536 || || || 14.588 || .408 || 29.638 || [<1 2 2 0 3|, <0 -9 7 61 10|] || 5120/5103 4000/3993 3025/3024 || || Hemiennealimmal || 14.648 || .0860 || 6.283 || [<18 0 -1 22 48|, <0 2 3 2 1|] || 2401/2400 3025/3024 4375/4374 || || || 15.170 || .407 || 31.549 || [<1 0 15 12 -7|, <0 5 -40 -29 33|] || 1375/1372 540/539 32805/32768 || || || 15.953 || .378 || 31.857 || [<2 1 22 2 25|, <0 3 -24 5 -25|] || 540/539 4000/3993 32805/32768 ||
Original HTML content:
<html><head><title>Catalog of eleven-limit rank two temperaments</title></head><body>This is the result of a search done for 11-limit rank two wedgies starting <<i j k l...|| in the range 0 <= i <= 35, |j| <= 51, |k| <= 62, |l| <= 76; the numbers were taken from the 22-et val. <br /> <br /> The complexity measure is TE complexity, the error measure is TE error, and the badness measure is 1000 times TE logflat badness, all normalized as described on this wiki. Complexity was cut off below at 0.655 and the rest classified as junk simply because the first listed temperament, with a generator chain of 0 1 2 3 4 5, seemed too amusing to leave out; it was cut off above at 16. The badness figure has an allowed maximum of 33.333. <br /> <br /> <table class="wiki_table"> <tr> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Error<br /> </td> <td>Badness<br /> </td> <td>Mapping<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td><br /> </td> <td>.655<br /> </td> <td>54.775<br /> </td> <td>22.549<br /> </td> <td>[<1 0 -1 -2 -3|, <0 1 2 3 4|]<br /> </td> <td>10/9 15/14 22/21<br /> </td> </tr> <tr> <td><br /> </td> <td>.680<br /> </td> <td>74.627<br /> </td> <td>32.666<br /> </td> <td>[<3 5 7 0 10|, <0 0 0 1 0|]<br /> </td> <td>11/9 10/9 16/15<br /> </td> </tr> <tr> <td><br /> </td> <td>.692<br /> </td> <td>73.354<br /> </td> <td>33.117<br /> </td> <td>[<1 0 4 3 7|, <0 1 -1 0 -2|]<br /> </td> <td>8/7 25/22 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.712<br /> </td> <td>47.618<br /> </td> <td>22.540<br /> </td> <td>[<4 6 9 11 0|, <0 0 0 0 1|]<br /> </td> <td>9/8 35/32 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.718<br /> </td> <td>57.4<br /> </td> <td>27.551<br /> </td> <td>[<2 3 0 1 -2|, <0 0 1 1 2|]<br /> </td> <td>25/22 9/8 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.718<br /> </td> <td>46.851<br /> </td> <td>22.488<br /> </td> <td>[<1 1 2 2 3|, <0 2 1 3 2|]<br /> </td> <td>25/22 12/11 15/14<br /> </td> </tr> <tr> <td><br /> </td> <td>.727<br /> </td> <td>44.826<br /> </td> <td>21.957<br /> </td> <td>[<1 0 4 6 5|, <0 1 -1 -2 -1|]<br /> </td> <td>11/10 16/15 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.771<br /> </td> <td>47.381<br /> </td> <td>25.592<br /> </td> <td>[<3 5 7 0 2|, <0 0 0 1 1|]<br /> </td> <td>10/9 16/15 22/21<br /> </td> </tr> <tr> <td><br /> </td> <td>.776<br /> </td> <td>45.662<br /> </td> <td>24.928<br /> </td> <td>[<1 0 4 6 2|, <0 1 -1 -2 1|]<br /> </td> <td>12/11 16/15 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.796<br /> </td> <td>38.983<br /> </td> <td>22.203<br /> </td> <td>[<1 0 0 2 1|, <0 2 3 1 3|]<br /> </td> <td>11/10 27/25 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.807<br /> </td> <td>41.497<br /> </td> <td>24.184<br /> </td> <td>[<1 0 0 2 2|, <0 2 3 1 2|]<br /> </td> <td>12/11 27/25 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.832<br /> </td> <td>38.874<br /> </td> <td>23.823<br /> </td> <td>[<1 0 4 -2 2|, <0 1 -1 3 1|]<br /> </td> <td>12/11 16/15 28/27<br /> </td> </tr> <tr> <td><br /> </td> <td>.833<br /> </td> <td>47.271<br /> </td> <td>29.071<br /> </td> <td>[<1 1 2 3 3|, <0 2 1 -1 1|]<br /> </td> <td>11/10 21/20 25/24<br /> </td> </tr> <tr> <td><br /> </td> <td>.854<br /> </td> <td>30.986<br /> </td> <td>19.854<br /> </td> <td>[<1 1 2 2 2|, <0 2 1 3 5|]<br /> </td> <td>15/14 22/21 25/24<br /> </td> </tr> <tr> <td><br /> </td> <td>.905<br /> </td> <td>43.667<br /> </td> <td>30.795<br /> </td> <td>[<1 0 4 -2 5|, <0 1 -1 3 -1|]<br /> </td> <td>11/10 16/15 28/27<br /> </td> </tr> <tr> <td><br /> </td> <td>.923<br /> </td> <td>33.964<br /> </td> <td>24.785<br /> </td> <td>[<5 8 12 14 0|, <0 0 0 0 1|]<br /> </td> <td>27/25 16/15 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.931<br /> </td> <td>43.645<br /> </td> <td>32.259<br /> </td> <td>[<1 0 3 2 1|, <0 2 -1 1 3|]<br /> </td> <td>35/32 15/14 22/21<br /> </td> </tr> <tr> <td><br /> </td> <td>.979<br /> </td> <td>40.847<br /> </td> <td>32.831<br /> </td> <td>[<1 0 4 6 10|, <0 1 -1 -2 -4|]<br /> </td> <td>16/15 35/33 21/20<br /> </td> </tr> <tr> <td><br /> </td> <td>.986<br /> </td> <td>25.28<br /> </td> <td>20.589<br /> </td> <td>[<1 0 4 -2 -3|, <0 1 -1 3 4|]<br /> </td> <td>16/15 22/21 28/27<br /> </td> </tr> <tr> <td><br /> </td> <td>1.016<br /> </td> <td>29.191<br /> </td> <td>24.988<br /> </td> <td>[<1 1 2 3 4|, <0 2 1 -1 -2|]<br /> </td> <td>21/20 25/24 33/32<br /> </td> </tr> <tr> <td><br /> </td> <td>1.023<br /> </td> <td>30.999<br /> </td> <td>26.828<br /> </td> <td>[<1 0 7 6 5|, <0 1 -3 -2 -1|]<br /> </td> <td>15/14 22/21 33/32<br /> </td> </tr> <tr> <td><br /> </td> <td>1.042<br /> </td> <td>27.464<br /> </td> <td>24.506<br /> </td> <td>[<1 0 -4 -2 -6|, <0 1 4 3 6|]<br /> </td> <td>35/33 21/20 28/27<br /> </td> </tr> <tr> <td><br /> </td> <td>1.067<br /> </td> <td>29.219<br /> </td> <td>27.114<br /> </td> <td>[<1 1 2 2 4|, <0 2 1 3 -2|]<br /> </td> <td>15/14 25/24 33/32<br /> </td> </tr> <tr> <td><br /> </td> <td>1.087<br /> </td> <td>26.805<br /> </td> <td>25.660<br /> </td> <td>[<1 1 2 3 2|, <0 2 1 -1 5|]<br /> </td> <td>21/20 25/24 45/44<br /> </td> </tr> <tr> <td><br /> </td> <td>1.138<br /> </td> <td>24.359<br /> </td> <td>25.167<br /> </td> <td>[<1 0 -4 -2 5|, <0 1 4 3 -1|]<br /> </td> <td>21/20 28/27 55/54<br /> </td> </tr> <tr> <td><br /> </td> <td>1.138<br /> </td> <td>22.068<br /> </td> <td>22.799<br /> </td> <td>[<1 0 0 2 -2|, <0 2 3 1 7|]<br /> </td> <td>27/25 21/20 45/44<br /> </td> </tr> <tr> <td><br /> </td> <td>1.142<br /> </td> <td>21.771<br /> </td> <td>22.649<br /> </td> <td>[<1 0 0 2 5|, <0 2 3 1 -2|]<br /> </td> <td>27/25 21/20 99/98<br /> </td> </tr> <tr> <td><br /> </td> <td>1.148<br /> </td> <td>30.989<br /> </td> <td>32.521<br /> </td> <td>[<1 0 -4 -5 -6|, <0 1 4 5 6|]<br /> </td> <td>15/14 22/21 125/121<br /> </td> </tr> <tr> <td><br /> </td> <td>1.196<br /> </td> <td>19.922<br /> </td> <td>22.366<br /> </td> <td>[<1 1 2 1 2|, <0 2 1 6 5|]<br /> </td> <td>35/33 25/24 28/27<br /> </td> </tr> <tr> <td><br /> </td> <td>1.208<br /> </td> <td>25.57<br /> </td> <td>29.193<br /> </td> <td>[<2 0 8 9 7|, <0 1 -1 -1 0|]<br /> </td> <td>16/15 22/21 50/49<br /> </td> </tr> <tr> <td><br /> </td> <td>1.226<br /> </td> <td>19.454<br /> </td> <td>22.753<br /> </td> <td>[<1 0 7 9 5|, <0 1 -3 -4 -1|]<br /> </td> <td>21/20 33/32 45/44<br /> </td> </tr> <tr> <td><br /> </td> <td>1.258<br /> </td> <td>23.058<br /> </td> <td>28.153<br /> </td> <td>[<1 0 4 -2 10|, <0 1 -1 3 -4|]<br /> </td> <td>16/15 28/27 77/75<br /> </td> </tr> <tr> <td><br /> </td> <td>1.335<br /> </td> <td>19.86<br /> </td> <td>26.790<br /> </td> <td>[<1 2 3 3 4|, <0 -3 -5 -1 -4|]<br /> </td> <td>22/21 80/77 36/35<br /> </td> </tr> <tr> <td><br /> </td> <td>1.34<br /> </td> <td>19.265<br /> </td> <td>26.141<br /> </td> <td>[<1 0 -4 6 5|, <0 1 4 -2 -1|]<br /> </td> <td>22/21 33/32 36/35<br /> </td> </tr> <tr> <td><br /> </td> <td>1.358<br /> </td> <td>22.998<br /> </td> <td>31.934<br /> </td> <td>[<5 8 0 14 17|, <0 0 1 0 0|]<br /> </td> <td>22/21 28/27 33/32<br /> </td> </tr> <tr> <td><br /> </td> <td>1.415<br /> </td> <td>18.282<br /> </td> <td>27.164<br /> </td> <td>[<4 0 3 5 1|, <0 1 1 1 2|]<br /> </td> <td>22/21 36/35 50/49<br /> </td> </tr> <tr> <td><br /> </td> <td>1.431<br /> </td> <td>20.956<br /> </td> <td>31.719<br /> </td> <td>[<1 1 2 4 4|, <0 2 1 -4 -2|]<br /> </td> <td>22/21 25/24 33/32<br /> </td> </tr> <tr> <td><br /> </td> <td>1.443<br /> </td> <td>20.107<br /> </td> <td>30.883<br /> </td> <td>[<5 8 0 14 6|, <0 0 1 0 1|]<br /> </td> <td>35/33 28/27 49/48<br /> </td> </tr> <tr> <td><br /> </td> <td>1.461<br /> </td> <td>20.67<br /> </td> <td>32.385<br /> </td> <td>[<2 0 3 4 7|, <0 2 1 1 0|]<br /> </td> <td>35/33 25/24 49/48<br /> </td> </tr> <tr> <td><br /> </td> <td>1.495<br /> </td> <td>19.317<br /> </td> <td>31.468<br /> </td> <td>[<2 0 -5 -4 -6|, <0 1 3 3 4|]<br /> </td> <td>22/21 28/27 50/49<br /> </td> </tr> <tr> <td><br /> </td> <td>1.50<br /> </td> <td>19.693<br /> </td> <td>32.239<br /> </td> <td>[<1 1 2 1 4|, <0 2 1 6 -2|]<br /> </td> <td>25/24 28/27 33/32<br /> </td> </tr> <tr> <td>August<br /> </td> <td>1.506<br /> </td> <td>12.245<br /> </td> <td>20.191<br /> </td> <td>[<3 0 7 -1 1|, <0 1 0 2 2|]<br /> </td> <td>36/35 45/44 56/55<br /> </td> </tr> <tr> <td>Domineering<br /> </td> <td>1.523<br /> </td> <td>13.075<br /> </td> <td>21.978<br /> </td> <td>[<1 0 -4 6 -6|, <0 1 4 -2 6|]<br /> </td> <td>36/35 45/44 64/63<br /> </td> </tr> <tr> <td>Septimal<br /> </td> <td>1.564<br /> </td> <td>13.396<br /> </td> <td>23.524<br /> </td> <td>[<7 11 16 0 24|, <0 0 0 1 0|]<br /> </td> <td>25/24 33/32 45/44<br /> </td> </tr> <tr> <td>Diminished<br /> </td> <td>1.582<br /> </td> <td>12.367<br /> </td> <td>22.132<br /> </td> <td>[<4 0 3 5 14|, <0 1 1 1 0|]<br /> </td> <td>36/35 50/49 56/55<br /> </td> </tr> <tr> <td>Armodue<br /> </td> <td>1.603<br /> </td> <td>14.879<br /> </td> <td>27.211<br /> </td> <td>[<1 0 7 -5 5|, <0 1 -3 5 -1|]<br /> </td> <td>33/32 36/35 45/44<br /> </td> </tr> <tr> <td>Dichotic<br /> </td> <td>1.63<br /> </td> <td>16.311<br /> </td> <td>30.680<br /> </td> <td>[<1 1 2 4 2|, <0 2 1 -4 5|]<br /> </td> <td>25/24 45/44 64/63<br /> </td> </tr> <tr> <td>Opossum<br /> </td> <td>1.692<br /> </td> <td>11.146<br /> </td> <td>22.325<br /> </td> <td>[<1 2 3 4 4|, <0 -3 -5 -9 -4|]<br /> </td> <td>28/27 77/75 55/54<br /> </td> </tr> <tr> <td>Octokaidecal<br /> </td> <td>1.698<br /> </td> <td>15.008<br /> </td> <td>30.235<br /> </td> <td>[<2 0 -5 -4 7|, <0 1 3 3 0|]<br /> </td> <td>28/27 50/49 55/54<br /> </td> </tr> <tr> <td>Pajaric<br /> </td> <td>1.722<br /> </td> <td>11.548<br /> </td> <td>23.798<br /> </td> <td>[<2 0 11 12 7|, <0 1 -2 -2 0|]<br /> </td> <td>45/44 50/49 56/55<br /> </td> </tr> <tr> <td>Progression<br /> </td> <td>1.749<br /> </td> <td>12.314<br /> </td> <td>26.050<br /> </td> <td>[<1 1 2 2 3|, <0 5 3 7 4|]<br /> </td> <td>36/35 77/75 56/55<br /> </td> </tr> <tr> <td>Decimal<br /> </td> <td>1.751<br /> </td> <td>12.599<br /> </td> <td>26.712<br /> </td> <td>[<2 0 3 4 -1|, <0 2 1 1 5|]<br /> </td> <td>25/24 45/44 49/48<br /> </td> </tr> <tr> <td>Blacksmith<br /> </td> <td>1.825<br /> </td> <td>10.85<br /> </td> <td>24.641<br /> </td> <td>[<5 8 0 14 29|, <0 0 1 0 -1|]<br /> </td> <td>28/27 49/48 55/54<br /> </td> </tr> <tr> <td>Demolished<br /> </td> <td>1.831<br /> </td> <td>11.635<br /> </td> <td>26.574<br /> </td> <td>[<4 0 3 5 -5|, <0 1 1 1 3|]<br /> </td> <td>36/35 45/44 50/49<br /> </td> </tr> <tr> <td>Dominant<br /> </td> <td>1.864<br /> </td> <td>10.279<br /> </td> <td>24.180<br /> </td> <td>[<1 0 -4 6 13|, <0 1 4 -2 -6|]<br /> </td> <td>36/35 56/55 64/63<br /> </td> </tr> <tr> <td>Decimated<br /> </td> <td>1.886<br /> </td> <td>13.109<br /> </td> <td>31.456<br /> </td> <td>[<2 0 3 4 10|, <0 2 1 1 -2|]<br /> </td> <td>25/24 33/32 49/48<br /> </td> </tr> <tr> <td>Meanenneadecal<br /> </td> <td>1.918<br /> </td> <td>8.68<br /> </td> <td>21.423<br /> </td> <td>[<1 0 -4 -13 -6|, <0 1 4 10 6|]<br /> </td> <td>45/44 56/55 81/80<br /> </td> </tr> <tr> <td>Sidi<br /> </td> <td>1.958<br /> </td> <td>12.902<br /> </td> <td>32.957<br /> </td> <td>[<1 3 3 6 7|, <0 -4 -2 -9 -10|]<br /> </td> <td>25/24 45/44 99/98<br /> </td> </tr> <tr> <td>Ferrier<br /> </td> <td>1.993<br /> </td> <td>11.103<br /> </td> <td>29.200<br /> </td> <td>[<5 8 0 14 -6|, <0 0 1 0 2|]<br /> </td> <td>28/27 77/75 49/48<br /> </td> </tr> <tr> <td>Superpelog<br /> </td> <td>2.016<br /> </td> <td>10.64<br /> </td> <td>28.535<br /> </td> <td>[<1 0 7 2 5|, <0 2 -6 1 -2|]<br /> </td> <td>33/32 45/44 99/98<br /> </td> </tr> <tr> <td>Negri<br /> </td> <td>2.038<br /> </td> <td>9.594<br /> </td> <td>26.190<br /> </td> <td>[<1 2 2 3 4|, <0 -4 3 -2 -5|]<br /> </td> <td>45/44 49/48 56/55<br /> </td> </tr> <tr> <td>Inflated<br /> </td> <td>2.102<br /> </td> <td>10.843<br /> </td> <td>31.171<br /> </td> <td>[<3 0 7 -6 -4|, <0 1 0 3 3|]<br /> </td> <td>28/27 128/125 55/54<br /> </td> </tr> <tr> <td>Injera<br /> </td> <td>2.153<br /> </td> <td>7.728<br /> </td> <td>23.124<br /> </td> <td>[<2 0 -8 -7 -12|, <0 1 4 4 6|]<br /> </td> <td>45/44 50/49 99/98<br /> </td> </tr> <tr> <td>Negric<br /> </td> <td>2.198<br /> </td> <td>9.886<br /> </td> <td>30.617<br /> </td> <td>[<1 2 2 3 3|, <0 -4 3 -2 4|]<br /> </td> <td>33/32 77/75 49/48<br /> </td> </tr> <tr> <td>Triforce<br /> </td> <td>2.201<br /> </td> <td>8.427<br /> </td> <td>26.152<br /> </td> <td>[<3 0 7 6 8|, <0 2 0 1 1|]<br /> </td> <td>77/75 128/125 56/55<br /> </td> </tr> <tr> <td>Duodecim<br /> </td> <td>2.201<br /> </td> <td>9.839<br /> </td> <td>30.536<br /> </td> <td>[<12 19 28 34 0|, <0 0 0 0 1|]<br /> </td> <td>36/35 50/49 64/63<br /> </td> </tr> <tr> <td>Meanundeci<br /> </td> <td>2.204<br /> </td> <td>10.143<br /> </td> <td>31.539<br /> </td> <td>[<1 0 -4 -13 5|, <0 1 4 10 -1|]<br /> </td> <td>33/32 77/75 55/54<br /> </td> </tr> <tr> <td>Semafour<br /> </td> <td>2.212<br /> </td> <td>9.111<br /> </td> <td>28.510<br /> </td> <td>[<1 0 -4 2 5|, <0 2 8 1 -2|]<br /> </td> <td>33/32 49/48 55/54<br /> </td> </tr> <tr> <td>Augene<br /> </td> <td>2.286<br /> </td> <td>5.932<br /> </td> <td>19.613<br /> </td> <td>[<3 0 7 18 20|, <0 1 0 -2 -2|]<br /> </td> <td>56/55 64/63 100/99<br /> </td> </tr> <tr> <td>Godzilla<br /> </td> <td>2.343<br /> </td> <td>8.404<br /> </td> <td>28.947<br /> </td> <td>[<1 0 -4 2 -6|, <0 2 8 1 12|]<br /> </td> <td>45/44 49/48 81/80<br /> </td> </tr> <tr> <td>Darjeeling<br /> </td> <td>2.347<br /> </td> <td>8.002<br /> </td> <td>27.648<br /> </td> <td>[<1 0 1 2 0|, <0 6 5 3 13|]<br /> </td> <td>77/75 49/48 55/54<br /> </td> </tr> <tr> <td>Progress<br /> </td> <td>2.399<br /> </td> <td>8.662<br /> </td> <td>31.036<br /> </td> <td>[<1 0 5 6 4|, <0 3 -5 -6 -1|]<br /> </td> <td>77/75 56/55 64/63<br /> </td> </tr> <tr> <td>Hedgehog<br /> </td> <td>2.439<br /> </td> <td>6.273<br /> </td> <td>23.095<br /> </td> <td>[<2 1 1 2 4|, <0 3 5 5 4|]<br /> </td> <td>50/49 55/54 99/98<br /> </td> </tr> <tr> <td>Keemun<br /> </td> <td>2.468<br /> </td> <td>7.298<br /> </td> <td>27.410<br /> </td> <td>[<1 0 1 2 4|, <0 6 5 3 -2|]<br /> </td> <td>49/48 56/55 100/99<br /> </td> </tr> <tr> <td>Porcupine<br /> </td> <td>2.478<br /> </td> <td>5.703<br /> </td> <td>21.562<br /> </td> <td>[<1 2 3 2 4|, <0 -3 -5 6 -4|]<br /> </td> <td>55/54 64/63 100/99<br /> </td> </tr> <tr> <td>Pajara<br /> </td> <td>2.543<br /> </td> <td>5.151<br /> </td> <td>20.343<br /> </td> <td>[<2 0 11 12 26|, <0 1 -2 -2 -6|]<br /> </td> <td>50/49 99/98 176/175<br /> </td> </tr> <tr> <td>Nautilus<br /> </td> <td>2.548<br /> </td> <td>6.568<br /> </td> <td>26.023<br /> </td> <td>[<1 2 3 3 4|, <0 -6 -10 -3 -8|]<br /> </td> <td>49/48 55/54 245/242<br /> </td> </tr> <tr> <td>Pajarous<br /> </td> <td>2.718<br /> </td> <td>6.427<br /> </td> <td>28.349<br /> </td> <td>[<2 0 11 12 -9|, <0 1 -2 -2 5|]<br /> </td> <td>50/49 55/54 64/63<br /> </td> </tr> <tr> <td>Telepathy<br /> </td> <td>2.864<br /> </td> <td>5.631<br /> </td> <td>27.109<br /> </td> <td>[<1 0 2 -1 -1|, <0 5 1 12 14|]<br /> </td> <td>55/54 99/98 176/175<br /> </td> </tr> <tr> <td>Sensis<br /> </td> <td>2.98<br /> </td> <td>5.578<br /> </td> <td>28.680<br /> </td> <td>[<1 6 8 11 6|, <0 -7 -9 -13 -4|]<br /> </td> <td>56/55 100/99 245/243<br /> </td> </tr> <tr> <td>Suprapyth<br /> </td> <td>3.011<br /> </td> <td>6.264<br /> </td> <td>32.768<br /> </td> <td>[<1 0 -12 6 13|, <0 1 9 -2 -6|]<br /> </td> <td>55/54 64/63 99/98<br /> </td> </tr> <tr> <td>Porky<br /> </td> <td>3.02<br /> </td> <td>5.186<br /> </td> <td>27.268<br /> </td> <td>[<1 2 3 5 4|, <0 -3 -5 -16 -4|]<br /> </td> <td>55/54 100/99 225/224<br /> </td> </tr> <tr> <td>Meantone<br /> </td> <td>3.031<br /> </td> <td>3.218<br /> </td> <td>17.027<br /> </td> <td>[<1 0 -4 -13 -25|, <0 1 4 10 18|]<br /> </td> <td>81/80 99/98 126/125<br /> </td> </tr> <tr> <td>"Ringo"?<br /> </td> <td>3.126<br /> </td> <td>5.902<br /> </td> <td>32.863<br /> </td> <td>[<1 1 5 4 2|, <0 2 -9 -4 5|]<br /> </td> <td>56/55 64/63 540/539<br /> </td> </tr> <tr> <td>Orwell<br /> </td> <td>3.242<br /> </td> <td>2.574<br /> </td> <td>15.231<br /> </td> <td>[<1 0 3 1 3|, <0 7 -3 8 2|]<br /> </td> <td>99/98 121/120 176/175<br /> </td> </tr> <tr> <td>Doublewide<br /> </td> <td>3.407<br /> </td> <td>4.988<br /> </td> <td>32.058<br /> </td> <td>[<2 1 3 4 8|, <0 4 3 3 -2|]<br /> </td> <td>50/49 875/864 99/98<br /> </td> </tr> <tr> <td>Superpyth<br /> </td> <td>3.41<br /> </td> <td>3.88<br /> </td> <td>24.976<br /> </td> <td>[<1 0 -12 6 -22|, <0 1 9 -2 16|]<br /> </td> <td>64/63 100/99 245/243<br /> </td> </tr> <tr> <td>Squares<br /> </td> <td>3.486<br /> </td> <td>3.24<br /> </td> <td>21.636<br /> </td> <td>[<1 3 8 6 7|, <0 -4 -16 -9 -10|]<br /> </td> <td>81/80 99/98 121/120<br /> </td> </tr> <tr> <td>Quasisupra<br /> </td> <td>3.49<br /> </td> <td>4.812<br /> </td> <td>32.203<br /> </td> <td>[<1 0 23 6 13|, <0 1 -13 -2 -6|]<br /> </td> <td>64/63 99/98 121/120<br /> </td> </tr> <tr> <td>Valentine<br /> </td> <td>3.651<br /> </td> <td>2.313<br /> </td> <td>16.687<br /> </td> <td>[<1 1 2 3 3|, <0 9 5 -3 7|]<br /> </td> <td>121/120 126/125 176/175<br /> </td> </tr> <tr> <td>Magic<br /> </td> <td>3.715<br /> </td> <td>2.741<br /> </td> <td>20.352<br /> </td> <td>[<1 0 2 -1 6|, <0 5 1 12 -8|]<br /> </td> <td>100/99 245/243 225/224<br /> </td> </tr> <tr> <td>Meanpop<br /> </td> <td>3.82<br /> </td> <td>2.77<br /> </td> <td>21.543<br /> </td> <td>[<1 0 -4 -13 24|, <0 1 4 10 -13|]<br /> </td> <td>81/80 126/125 540/539<br /> </td> </tr> <tr> <td>Mohajira<br /> </td> <td>3.863<br /> </td> <td>3.288<br /> </td> <td>26.064<br /> </td> <td>[<1 1 0 6 2|, <0 2 8 -11 5|]<br /> </td> <td>81/80 121/120 176/175<br /> </td> </tr> <tr> <td>Cassandra<br /> </td> <td>3.897<br /> </td> <td>2.929<br /> </td> <td>23.556<br /> </td> <td>[<1 0 15 25 32|, <0 1 -8 -14 -18|]<br /> </td> <td>245/242 100/99 225/224<br /> </td> </tr> <tr> <td>Nusecond<br /> </td> <td>3.927<br /> </td> <td>3.146<br /> </td> <td>25.621<br /> </td> <td>[<1 3 4 5 5|, <0 -11 -13 -17 -12|]<br /> </td> <td>99/98 121/120 126/125<br /> </td> </tr> <tr> <td>Migration<br /> </td> <td>3.935<br /> </td> <td>3.123<br /> </td> <td>25.516<br /> </td> <td>[<1 1 0 -3 2|, <0 2 8 20 5|]<br /> </td> <td>81/80 121/120 126/125<br /> </td> </tr> <tr> <td>Mothra<br /> </td> <td>3.99<br /> </td> <td>3.066<br /> </td> <td>25.642<br /> </td> <td>[<1 1 0 3 5|, <0 3 12 -1 -8|]<br /> </td> <td>81/80 99/98 385/384<br /> </td> </tr> <tr> <td>Octacot<br /> </td> <td>4.07<br /> </td> <td>2.785<br /> </td> <td>24.078<br /> </td> <td>[<1 1 1 2 2|, <0 8 18 11 20|]<br /> </td> <td>245/242 100/99 243/242<br /> </td> </tr> <tr> <td>Myna<br /> </td> <td>4.127<br /> </td> <td>1.903<br /> </td> <td>16.842<br /> </td> <td>[<1 9 9 8 22|, <0 -10 -9 -7 -25|]<br /> </td> <td>126/125 176/175 243/242<br /> </td> </tr> <tr> <td>Superkleismic<br /> </td> <td>4.137<br /> </td> <td>2.888<br /> </td> <td>25.659<br /> </td> <td>[<1 4 5 2 4|, <0 -9 -10 3 -2|]<br /> </td> <td>245/242 100/99 385/384<br /> </td> </tr> <tr> <td>Würschmidt<br /> </td> <td>4.344<br /> </td> <td>2.533<br /> </td> <td>24.413<br /> </td> <td>[<1 7 3 15 17|, <0 -8 -1 -18 -20|]<br /> </td> <td>99/98 176/175 243/242<br /> </td> </tr> <tr> <td>Miracle<br /> </td> <td>4.405<br /> </td> <td>1.083<br /> </td> <td>10.684<br /> </td> <td>[<1 1 3 3 2|, <0 6 -7 -2 15|]<br /> </td> <td>225/224 385/384 441/440<br /> </td> </tr> <tr> <td>Mosura<br /> </td> <td>4.411<br /> </td> <td>3.17<br /> </td> <td>31.334<br /> </td> <td>[<1 1 0 3 -1|, <0 3 12 -1 23|]<br /> </td> <td>81/80 1029/1024 540/539<br /> </td> </tr> <tr> <td>Sensus<br /> </td> <td>4.503<br /> </td> <td>2.882<br /> </td> <td>29.486<br /> </td> <td>[<1 6 8 11 23|, <0 -7 -9 -13 -31|]<br /> </td> <td>245/243 126/125 176/175<br /> </td> </tr> <tr> <td>Shrutar<br /> </td> <td>4.53<br /> </td> <td>2.563<br /> </td> <td>26.489<br /> </td> <td>[<2 1 9 -2 8|, <0 2 -4 7 -1|]<br /> </td> <td>121/120 245/243 176/175<br /> </td> </tr> <tr> <td><br /> </td> <td>4.531<br /> </td> <td>3.187<br /> </td> <td>32.946<br /> </td> <td>[<1 1 3 3 5|, <0 6 -7 -2 -16|]<br /> </td> <td>99/98 176/175 1029/1024<br /> </td> </tr> <tr> <td>Tritonic<br /> </td> <td>4.596<br /> </td> <td>2.234<br /> </td> <td>23.659<br /> </td> <td>[<1 4 -3 -3 2|, <0 -5 11 12 3|]<br /> </td> <td>121/120 225/224 441/440<br /> </td> </tr> <tr> <td>Bunya<br /> </td> <td>4.833<br /> </td> <td>2.722<br /> </td> <td>31.332<br /> </td> <td>[<1 1 1 -1 2|, <0 4 9 26 10|]<br /> </td> <td>100/99 225/224 243/242<br /> </td> </tr> <tr> <td>Diaschismic<br /> </td> <td>5.048<br /> </td> <td>2.023<br /> </td> <td>25.034<br /> </td> <td>[<2 0 11 31 45|, <0 1 -2 -8 -12|]<br /> </td> <td>126/125 5488/5445 176/175<br /> </td> </tr> <tr> <td>Septimin<br /> </td> <td>5.089<br /> </td> <td>2.496<br /> </td> <td>31.309<br /> </td> <td>[<1 4 1 5 5|, <0 -11 6 -10 -7|]<br /> </td> <td>2401/2376 225/224 385/384<br /> </td> </tr> <tr> <td>Witchcraft<br /> </td> <td>5.419<br /> </td> <td>2.204<br /> </td> <td>30.706<br /> </td> <td>[<1 0 2 -1 -7|, <0 5 1 12 33|]<br /> </td> <td>245/243 225/224 441/440<br /> </td> </tr> <tr> <td>Thuja<br /> </td> <td>5.622<br /> </td> <td>2.233<br /> </td> <td>33.078<br /> </td> <td>[<1 8 5 -2 4|, <0 -12 -5 9 -1|]<br /> </td> <td>1344/1331 126/125 176/175<br /> </td> </tr> <tr> <td>Hemiwur<br /> </td> <td>5.723<br /> </td> <td>1.918<br /> </td> <td>29.270<br /> </td> <td>[<1 15 4 7 11|, <0 -16 -2 -5 -9|]<br /> </td> <td>121/120 176/175 1375/1372<br /> </td> </tr> <tr> <td>Rodan<br /> </td> <td>5.754<br /> </td> <td>1.50<br /> </td> <td>23.093<br /> </td> <td>[<1 1 -1 3 6|, <0 3 17 -1 -13|]<br /> </td> <td>245/243 385/384 441/440<br /> </td> </tr> <tr> <td>Echidna<br /> </td> <td>5.898<br /> </td> <td>1.62<br /> </td> <td>25.987<br /> </td> <td>[<2 1 9 2 12|, <0 3 -6 5 -7|]<br /> </td> <td>176/175 896/891 540/539<br /> </td> </tr> <tr> <td>Semisept<br /> </td> <td>5.969<br /> </td> <td>1.373<br /> </td> <td>22.476<br /> </td> <td>[<1 12 6 12 20|, <0 -17 -6 -15 -27|]<br /> </td> <td>1331/1323 176/175 540/539<br /> </td> </tr> <tr> <td><br /> </td> <td>6.006<br /> </td> <td>1.901<br /> </td> <td>31.438<br /> </td> <td>[<1 0 3 1 -4|, <0 7 -3 8 33|]<br /> </td> <td>1728/1715 225/224 441/440<br /> </td> </tr> <tr> <td>Hemififths<br /> </td> <td>6.148<br /> </td> <td>1.367<br /> </td> <td>23.498<br /> </td> <td>[<1 1 -5 -1 2|, <0 2 25 13 5|]<br /> </td> <td>896/891 243/242 441/440<br /> </td> </tr> <tr> <td>Garibaldi<br /> </td> <td>6.365<br /> </td> <td>1.504<br /> </td> <td>27.396<br /> </td> <td>[<1 0 15 25 -33|, <0 1 -8 -14 23|]<br /> </td> <td>2200/2187 225/224 385/384<br /> </td> </tr> <tr> <td>Wizard<br /> </td> <td>6.421<br /> </td> <td>1.003<br /> </td> <td>18.539<br /> </td> <td>[<2 1 5 2 8|, <0 6 -1 10 -3|]<br /> </td> <td>225/224 385/384 4000/3993<br /> </td> </tr> <tr> <td>Slender<br /> </td> <td>6.727<br /> </td> <td>1.269<br /> </td> <td>25.342<br /> </td> <td>[<1 2 2 3 4|, <0 -13 10 -6 -17|]<br /> </td> <td>1331/1323 225/224 385/384<br /> </td> </tr> <tr> <td>Compton<br /> </td> <td>6.767<br /> </td> <td>1.102<br /> </td> <td>22.235<br /> </td> <td>[<12 19 0 -22 -42|, <0 0 1 2 3|]<br /> </td> <td>225/224 4375/4356 441/440<br /> </td> </tr> <tr> <td>Hemithirds<br /> </td> <td>7.04<br /> </td> <td>.882<br /> </td> <td>19.003<br /> </td> <td>[<1 4 2 2 7|, <0 -15 2 5 -22|]<br /> </td> <td>3136/3125 385/384 441/440<br /> </td> </tr> <tr> <td>Catakleismic<br /> </td> <td>7.254<br /> </td> <td>.965<br /> </td> <td>21.849<br /> </td> <td>[<1 0 1 -3 9|, <0 6 5 22 -21|]<br /> </td> <td>225/224 385/384 4375/4374<br /> </td> </tr> <tr> <td>Harry<br /> </td> <td>7.373<br /> </td> <td>.682<br /> </td> <td>15.867<br /> </td> <td>[<2 4 7 7 9|, <0 -6 -17 -10 -15|]<br /> </td> <td>243/242 441/440 4000/3993<br /> </td> </tr> <tr> <td>Pluto<br /> </td> <td>7.524<br /> </td> <td>1.24<br /> </td> <td>29.844<br /> </td> <td>[<1 5 15 15 2|, <0 -7 -26 -25 3|]<br /> </td> <td>896/891 1375/1372 540/539<br /> </td> </tr> <tr> <td>Unidec<br /> </td> <td>7.532<br /> </td> <td>.642<br /> </td> <td>15.479<br /> </td> <td>[<2 5 8 5 6|, <0 -6 -11 2 3|]<br /> </td> <td>385/384 441/440 12005/11979<br /> </td> </tr> <tr> <td>Ennealimmic<br /> </td> <td>7.578<br /> </td> <td>.835<br /> </td> <td>20.347<br /> </td> <td>[<9 1 1 12 -2|, <0 2 3 2 5|]<br /> </td> <td>4375/4356 243/242 441/440<br /> </td> </tr> <tr> <td>Tritikleismic<br /> </td> <td>7.587<br /> </td> <td>.792<br /> </td> <td>19.333<br /> </td> <td>[<3 0 3 10 8|, <0 6 5 -2 3|]<br /> </td> <td>385/384 441/440 4000/3993<br /> </td> </tr> <tr> <td>Hemiwürschmidt<br /> </td> <td>7.793<br /> </td> <td>.825<br /> </td> <td>21.069<br /> </td> <td>[<1 15 4 7 37|, <0 -16 -2 -5 -40|]<br /> </td> <td>243/242 3136/3125 441/440<br /> </td> </tr> <tr> <td>Marvolo<br /> </td> <td>7.935<br /> </td> <td>1.101<br /> </td> <td>28.965<br /> </td> <td>[<1 2 1 1 2|, <0 -6 19 26 21|]<br /> </td> <td>225/224 441/440 4000/3993<br /> </td> </tr> <tr> <td>Bikleismic<br /> </td> <td>8.191<br /> </td> <td>1.057<br /> </td> <td>29.319<br /> </td> <td>[<2 0 2 -6 -1|, <0 6 5 22 15|]<br /> </td> <td>225/224 4375/4356 243/242<br /> </td> </tr> <tr> <td><br /> </td> <td>8.212<br /> </td> <td>1.092<br /> </td> <td>30.422<br /> </td> <td>[<1 0 1 -3 -10|, <0 6 5 22 51|]<br /> </td> <td>225/224 441/440 4375/4374<br /> </td> </tr> <tr> <td><br /> </td> <td>8.286<br /> </td> <td>1.076<br /> </td> <td>30.426<br /> </td> <td>[<9 0 28 11 24|, <0 2 -1 2 1|]<br /> </td> <td>225/224 385/384 12005/11979<br /> </td> </tr> <tr> <td>Marvo<br /> </td> <td>8.731<br /> </td> <td>1.027<br /> </td> <td>31.685<br /> </td> <td>[<1 5 12 29 12|, <0 -6 -17 -46 -15|]<br /> </td> <td>225/224 243/242 4000/3993<br /> </td> </tr> <tr> <td>Octoid<br /> </td> <td>9.17<br /> </td> <td>.421<br /> </td> <td>14.097<br /> </td> <td>[<8 1 3 3 16|, <0 3 4 5 3|]<br /> </td> <td>1375/1372 540/539 4000/3993<br /> </td> </tr> <tr> <td><br /> </td> <td>9.182<br /> </td> <td>.899<br /> </td> <td>30.171<br /> </td> <td>[<1 3 2 3 5|, <0 -22 5 -3 -24|]<br /> </td> <td>1331/1323 385/384 1375/1372<br /> </td> </tr> <tr> <td>Guiron<br /> </td> <td>9.377<br /> </td> <td>.767<br /> </td> <td>26.648<br /> </td> <td>[<1 1 7 3 -2|, <0 3 -24 -1 28|]<br /> </td> <td>10976/10935 385/384 441/440<br /> </td> </tr> <tr> <td>Neominor<br /> </td> <td>9.493<br /> </td> <td>.788<br /> </td> <td>27.959<br /> </td> <td>[<1 3 12 8 7|, <0 -6 -41 -22 -15|]<br /> </td> <td>243/242 35937/35840 441/440<br /> </td> </tr> <tr> <td>Grendel<br /> </td> <td>9.729<br /> </td> <td>.537<br /> </td> <td>19.845<br /> </td> <td>[<1 9 2 7 17|, <0 -23 1 -13 -42|]<br /> </td> <td>1375/1372 540/539 5632/5625<br /> </td> </tr> <tr> <td><br /> </td> <td>9.733<br /> </td> <td>.770<br /> </td> <td>28.467<br /> </td> <td>[<1 4 14 2 -5|, <0 -6 -29 2 21|]<br /> </td> <td>19683/19600 385/384 441/440<br /> </td> </tr> <tr> <td>Sqrtphi<br /> </td> <td>9.756<br /> </td> <td>.687<br /> </td> <td>25.515<br /> </td> <td>[<1 12 11 16 17|, <0 -30 -25 -38 -39|]<br /> </td> <td>4375/4356 1375/1372 540/539<br /> </td> </tr> <tr> <td><br /> </td> <td>9.831<br /> </td> <td>.810<br /> </td> <td>30.461<br /> </td> <td>[<2 3 4 5 6|, <0 5 19 18 27|]<br /> </td> <td>3388/3375 8019/8000 441/440<br /> </td> </tr> <tr> <td>Sesquart<br /> </td> <td>9.891<br /> </td> <td>.772<br /> </td> <td>29.306<br /> </td> <td>[<1 1 7 5 2|, <0 4 -32 -15 10|]<br /> </td> <td>243/242 16384/16335 441/440<br /> </td> </tr> <tr> <td>Quadritikleismic<br /> </td> <td>10.315<br /> </td> <td>.575<br /> </td> <td>23.406<br /> </td> <td>[<4 0 4 7 17|, <0 6 5 4 -3|]<br /> </td> <td>385/384 1375/1372 9801/9800<br /> </td> </tr> <tr> <td>Mirkat<br /> </td> <td>10.575<br /> </td> <td>.521<br /> </td> <td>22.126<br /> </td> <td>[<3 2 1 2 9|, <0 6 13 14 3|]<br /> </td> <td>8019/8000 1375/1372 540/539<br /> </td> </tr> <tr> <td>Bisupermajor<br /> </td> <td>10.578<br /> </td> <td>.755<br /> </td> <td>32.080<br /> </td> <td>[<2 1 6 1 8|, <0 8 -5 17 -4|]<br /> </td> <td>3388/3375 385/384 9801/9800<br /> </td> </tr> <tr> <td>Cotritone<br /> </td> <td>10.735<br /> </td> <td>.740<br /> </td> <td>32.225<br /> </td> <td>[<1 17 9 10 5|, <0 -30 -13 -14 -3|]<br /> </td> <td>385/384 1375/1372 4000/3993<br /> </td> </tr> <tr> <td>Kwai<br /> </td> <td>11.134<br /> </td> <td>.567<br /> </td> <td>26.219<br /> </td> <td>[<1 0 -50 -40 32|, <0 1 33 27 -18|]<br /> </td> <td>16384/16335 1375/1372 540/539<br /> </td> </tr> <tr> <td><br /> </td> <td>11.163<br /> </td> <td>.642<br /> </td> <td>29.807<br /> </td> <td>[<1 7 0 1 13|, <0 -21 9 7 -37|]<br /> </td> <td>385/384 441/440 456533/455625<br /> </td> </tr> <tr> <td>Supers<br /> </td> <td>11.476<br /> </td> <td>.580<br /> </td> <td>28.240<br /> </td> <td>[<2 1 -12 2 -9|, <0 3 23 5 22|]<br /> </td> <td>5120/5103 540/539 4000/3993<br /> </td> </tr> <tr> <td><br /> </td> <td>11.678<br /> </td> <td>.621<br /> </td> <td>31.123<br /> </td> <td>[<9 1 1 12 51|, <0 2 3 2 -3|]<br /> </td> <td>385/384 1375/1372 4375/4374<br /> </td> </tr> <tr> <td>Bischismic<br /> </td> <td>11.743<br /> </td> <td>.557<br /> </td> <td>28.160<br /> </td> <td>[<2 0 30 69 102|, <0 1 -8 -20 -30|]<br /> </td> <td>3136/3125 8019/8000 441/440<br /> </td> </tr> <tr> <td><br /> </td> <td>12.086<br /> </td> <td>.464<br /> </td> <td>24.619<br /> </td> <td>[<2 4 4 7 6|, <0 -9 7 -15 10|]<br /> </td> <td>540/539 4000/3993 5632/5625<br /> </td> </tr> <tr> <td><br /> </td> <td>12.537<br /> </td> <td>.559<br /> </td> <td>31.506<br /> </td> <td>[<1 3 6 -2 21|, <0 -5 -13 17 -62|]<br /> </td> <td>5120/5103 540/539 5632/5625<br /> </td> </tr> <tr> <td>Quincy<br /> </td> <td>12.684<br /> </td> <td>.537<br /> </td> <td>30.875<br /> </td> <td>[<1 2 3 3 4|, <0 -30 -49 -14 -39|]<br /> </td> <td>441/440 4000/3993 41503/41472<br /> </td> </tr> <tr> <td>Hemiamity<br /> </td> <td>13.714<br /> </td> <td>.478<br /> </td> <td>31.307<br /> </td> <td>[<2 1 -1 13 13|, <0 5 13 -17 -14|]<br /> </td> <td>5120/5103 3025/3024 4375/4374<br /> </td> </tr> <tr> <td><br /> </td> <td>13.875<br /> </td> <td>.414<br /> </td> <td>27.621<br /> </td> <td>[<1 10 0 6 20|, <0 -29 8 -11 -57|]<br /> </td> <td>1375/1372 540/539 65625/65536<br /> </td> </tr> <tr> <td><br /> </td> <td>14.588<br /> </td> <td>.408<br /> </td> <td>29.638<br /> </td> <td>[<1 2 2 0 3|, <0 -9 7 61 10|]<br /> </td> <td>5120/5103 4000/3993 3025/3024<br /> </td> </tr> <tr> <td>Hemiennealimmal<br /> </td> <td>14.648<br /> </td> <td>.0860<br /> </td> <td>6.283<br /> </td> <td>[<18 0 -1 22 48|, <0 2 3 2 1|]<br /> </td> <td>2401/2400 3025/3024 4375/4374<br /> </td> </tr> <tr> <td><br /> </td> <td>15.170<br /> </td> <td>.407<br /> </td> <td>31.549<br /> </td> <td>[<1 0 15 12 -7|, <0 5 -40 -29 33|]<br /> </td> <td>1375/1372 540/539 32805/32768<br /> </td> </tr> <tr> <td><br /> </td> <td>15.953<br /> </td> <td>.378<br /> </td> <td>31.857<br /> </td> <td>[<2 1 22 2 25|, <0 3 -24 5 -25|]<br /> </td> <td>540/539 4000/3993 32805/32768<br /> </td> </tr> </table> </body></html>