Superparticular ratio

Revision as of 01:36, 1 February 2023 by TallKite (talk | contribs) (added the delta terminology as an alternative)

Superparticular numbers are ratios of the form [math]\displaystyle{ \frac{n+1}{n} = 1+\frac{1}{n} }[/math], where n is a whole number greater than 0.

English Wikipedia has an article on:

The word "superparticular" has Latin etymology and means "above by one part". The equivalent word of Greek origin is "epimoric" (from επιμοριος, epimorios).

These ratios have some peculiar properties:

  • The difference tone of the dyad is also the virtual fundamental.
  • The first 6 such ratios (3/2, 4/3, 5/4, 6/5, 7/6, 8/7) are notable harmonic entropy minima.
  • The logarithmic difference (i.e. quotient) between two successive epimoric ratios is always an epimoric ratio.
  • The logarithmic sum (i.e. product) of two successive epimoric ratios is either an epimoric ratio or an epimeric ratio.
  • Every epimoric ratio can be split into the product of two epimoric ratios. One way is via the identity: [math]\displaystyle{ 1+\frac{1}{n} = (1+\frac{1}{2n})\times(1+\frac{1}{2n+1}) }[/math], but more than one such splitting method may exist.
  • If a/b and c/d are Farey neighbors, that is if a/b < c/d and bc - ad = 1, then (c/d)/(a/b) = bc/ad is epimoric.
  • The ratios between successive members of any given Farey sequence will be superparticular.

Curiously enough, the ancient Greeks did not consider 2/1 to be superparticular because it is a multiple of the fundamental (the same rule applies to all natural harmonics in the Greek system). Another explanation for the exclusion of 2/1 can be found on the Generalized superparticulars page.

Kite Giedraitis has proposed the term delta-1 (where delta means difference, here the difference between the numerator and the denominator) as a replacement for superparticular, delta-2 for ratios of the form [math]\displaystyle{ \frac{n+2}{n} }[/math], likewise delta-3, delta-4, etc.

See also