29EDT is the equal division of the third harmonic into 29 parts of 65.5847 cents each, corresponding to 18.2970 edo. It is related to the regular temperament supported by 183edo, 311edo, and 494edo.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 65.5847 27/26
2 131.1693
3 196.7540 28/25
4 262.3386
5 327.9233
6 393.5079 64/51
7 459.0926
8 524.6772 65/48
9 590.2619 45/32
10 655.8466
11 721.4312
12 787.0159 63/40, 52/33
13 852.6005 18/11
14 918.1852
15 983.7698
16 1049.3545 11/6
17 1114.9391 99/52, 40/21
18 1180.5238
19 1246.1084
20 1311.6931 32/15
21 1377.2778 144/65
22 1442.8624
23 1508.4471 153/64
24 1574.0317
25 1639.6164
26 1705.2010 75/28
27 1770.7857
28 1836.3703 26/9
29 1901.9550 exact 3/1 just perfect fifth plus an octave

Related regular temperament

5-limit 183&311

Comma: |145 -49 -29>

POTE generator: 65.585

Map: [<1 0 5|, <0 29 -49|]

EDOs: 183, 311, 494, 677, 860, 1171, 1665, 1848, 2159, 2836, 3019, 4007

Badness: 0.1949

7-limit 183&311

Commas: 703125/702464, 26843545600/26795786661

POTE generator: ~8505/8192 = 65.588

Map: [<1 0 5 8|, <0 29 -49 -95|]

EDOs: 128, 183, 311, 494, 677, 805, 1116, 1299

Badness: 0.1348

11-limit 183&311

Commas: 3025/3024, 131072/130977, 703125/702464

POTE generator: ~80/77 = 65.588

Map: [<1 0 5 8 1|, <0 29 -49 -95 45|]

EDOs: 128, 183, 311, 494, 677, 805, 1299

Badness: 0.0328

13-limit 183&311

Commas: 2080/2079, 3025/3024, 4096/4095, 31250/31213

POTE generator: ~27/26 = 65.588

Map: [<1 0 5 8 1 -1|, <0 29 -49 -95 45 86|]

EDOs: 128, 183, 311, 494, 677, 805, 1299

Badness: 0.0168

17-limit 183&311

Commas: 1156/1155, 1275/1274, 2080/2079, 2431/2430, 4096/4095

POTE generator: ~27/26 = 65.588

Map: [<1 0 5 8 1 -1 6|, <0 29 -49 -95 45 86 -35|]

EDOs: 128, 183, 311, 494, 677, 805

Badness: 0.0147