761edo

Revision as of 16:37, 17 January 2025 by FloraC (talk | contribs) (Theory: cleanup)
← 760edo 761edo 762edo →
Prime factorization 761 (prime)
Step size 1.57687 ¢ 
Fifth 445\761 (701.708 ¢)
Semitones (A1:m2) 71:58 (112 ¢ : 91.46 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

761edo is consistent to the 9-odd-limit. As an equal temperament, it tempers out 32805/32768 in the 5-limit; 420175/419904 and [3 13 -15 4 in the 7-limit. The equal temperament is strong in the 2.3.5.13.29.31 subgroup, tempering out 32805/32768, 21141/21125, 3627/3625, 140625/140608 and 45349632/45287125.

Odd harmonics

Approximation of odd harmonics in 761edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.247 +0.020 -0.626 -0.493 +0.587 -0.055 -0.227 +0.695 +0.516 +0.704 -0.679
Relative (%) -15.6 +1.3 -39.7 -31.3 +37.3 -3.5 -14.4 +44.1 +32.7 +44.6 -43.1
Steps
(reduced)
1206
(445)
1767
(245)
2136
(614)
2412
(129)
2633
(350)
2816
(533)
2973
(690)
3111
(67)
3233
(189)
3343
(299)
3442
(398)

Subsets and supersets

761edo is the 135th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1206 761 [761 1206]] 0.0778 0.0778 4.93
2.3.5 32805/32768, [69 81 -85 [761 1206 1767]] 0.0490 0.0755 4.79
2.3.5.7 32805/32768, 420175/419904, [3 13 -15 4 [761 1206 1767 2136]] 0.0925 0.0998 6.33

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 316\761 498.292 4/3 Helmholtz

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct