← 250edo 251edo 252edo →
Prime factorization 251 (prime)
Step size 4.78088 ¢ 
Fifth 147\251 (702.789 ¢)
Semitones (A1:m2) 25:18 (119.5 ¢ : 86.06 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

251et tempers out 1600000/1594323 (amity comma) and [49 -6 -17 (maquila comma) in the 5-limit; 4375/4374, 5120/5103, and 40500000/40353607 in the 7-limit, supporting amity, supermajor, and acrokleismic.

Using the patent val 251 398 583 705 868], it tempers out 1331/1323, 1375/1372, 16896/16807, and 24057/24010 in the 11-limit; 352/351, 676/675, 847/845, and 1573/1568 in the 13-limit.

Using the 251e val 251 398 583 705 869], it tempers out 540/539, 5632/5625, 6250/6237, and 12005/11979 in the 11-limit; 364/363, 676/675, 1716/1715, and 3584/3575 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 251edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.83 +0.94 +1.69 +1.67 -1.52 +0.91 +1.77 +0.22 -1.10 -2.26 -1.98
Relative (%) +17.4 +19.6 +35.4 +34.9 -31.7 +19.0 +37.0 +4.7 -23.0 -47.2 -41.4
Steps
(reduced)
398
(147)
583
(81)
705
(203)
796
(43)
868
(115)
929
(176)
981
(228)
1026
(22)
1066
(62)
1102
(98)
1135
(131)

Subsets and supersets

251edo is the 54th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [398 -251 [251 398]] −0.2630 0.2630 5.50
2.3.5 [9 -13 5, [49 -6 -17 [251 398 583]] −0.3099 0.2247 4.70
2.3.5.7 4375/4374, 5120/5103, 40500000/40353607 [251 398 583 705]] −0.3830 0.2322 4.86

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 66\251 315.54 6/5 Acrokleismic
1 71\251 339.44 243/200 Amity
1 91\251 435.06 9/7 Supermajor
1 96\251 458.96 125/96 Majvam
1 112\251 535.46 512/375 Maquila

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium