357/256
Interval information |
octave-reduced 357th harmonic
reduced harmonic
The merry tritone, 357/256, is a close approximation to 12\25, hence the name. It is also a rather good approximation to 32/23 at about four cents (or 8211/8192) away.
Terminology and notation
Conceptualization systems disagree on whether 17/16 should be a diatonic semitone or a chromatic semitone, and as a result the disagreement propagates to all intervals of HC17. See 17-limit for a detailed discussion.
For 357/256 specifically:
- In Functional Just System, it is a diminished fifth, separated by 4131/4096 from the Pythagorean diminished fifth (1024/729) less a 64/63
- In Helmholtz-Ellis notation, it is an augmented fourth, separated by 2187/2176 from the Pythagorean augmented fourth (729/512) less a 64/63.
The term merry tritone omits the distinction and only describes its melodic property i.e. the size.