209edt

Revision as of 09:25, 2 October 2024 by BudjarnLambeth (talk | contribs) (Intro, intervals, harmonics)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 208edt 209edt 210edt →
Prime factorization 11 × 19
Step size 9.10026 ¢ 
Octave 132\209edt (1201.23 ¢) (→ 12\19edt)
Consistency limit 7
Distinct consistency limit 7

209 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 209edt or 209ed3), is a nonoctave tuning system that divides the interval of 3/1 into 209 equal parts of about 9.1 ¢ each. Each step represents a frequency ratio of 31/209, or the 209th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.1 6.22
2 18.2 12.44
3 27.3 18.66 63/62, 66/65
4 36.4 24.88 47/46
5 45.5 31.1 38/37, 39/38
6 54.6 37.32 65/63
7 63.7 43.54 28/27
8 72.8 49.76 49/47
9 81.9 55.98 65/62
10 91 62.2 39/37
11 100.1 68.42
12 109.2 74.64 33/31, 49/46
13 118.3 80.86
14 127.4 87.08 14/13
15 136.5 93.3
16 145.6 99.52 37/34, 62/57
17 154.7 105.74
18 163.8 111.96
19 172.91 118.18 21/19
20 182.01 124.4 10/9
21 191.11 130.62 48/43
22 200.21 136.84 46/41, 55/49
23 209.31 143.06 35/31, 44/39
24 218.41 149.28 42/37
25 227.51 155.5 57/50, 65/57
26 236.61 161.72 39/34, 47/41
27 245.71 167.94
28 254.81 174.16 22/19, 51/44
29 263.91 180.38
30 273.01 186.6 41/35, 55/47
31 282.11 192.82 20/17
32 291.21 199.04
33 300.31 205.26 44/37
34 309.41 211.48 49/41, 55/46
35 318.51 217.7
36 327.61 223.92 29/24
37 336.71 230.14 17/14
38 345.81 236.36
39 354.91 242.58 27/22, 70/57
40 364.01 248.8 37/30
41 373.11 255.02 31/25
42 382.21 261.24
43 391.31 267.46
44 400.41 273.68 63/50
45 409.51 279.9 19/15
46 418.61 286.12
47 427.71 292.34
48 436.81 298.56
49 445.91 304.78 22/17
50 455.01 311 13/10
51 464.11 317.22 17/13
52 473.21 323.44 46/35
53 482.31 329.67 37/28
54 491.41 335.89
55 500.51 342.11
56 509.61 348.33 47/35, 51/38, 55/41
57 518.72 354.55 27/20, 58/43
58 527.82 360.77 19/14
59 536.92 366.99 15/11
60 546.02 373.21 37/27
61 555.12 379.43 51/37, 62/45
62 564.22 385.65 18/13
63 573.32 391.87 39/28
64 582.42 398.09 7/5
65 591.52 404.31 38/27
66 600.62 410.53
67 609.72 416.75
68 618.82 422.97
69 627.92 429.19
70 637.02 435.41 13/9
71 646.12 441.63 45/31
72 655.22 447.85 54/37
73 664.32 454.07 69/47
74 673.42 460.29 31/21
75 682.52 466.51 43/29, 46/31
76 691.62 472.73
77 700.72 478.95
78 709.82 485.17
79 718.92 491.39 50/33
80 728.02 497.61
81 737.12 503.83
82 746.22 510.05 20/13
83 755.32 516.27 65/42
84 764.42 522.49 14/9
85 773.52 528.71
86 782.62 534.93 11/7
87 791.72 541.15 30/19, 49/31
88 800.82 547.37 27/17
89 809.92 553.59
90 819.02 559.81
91 828.12 566.03 50/31
92 837.22 572.25 60/37
93 846.32 578.47 44/27
94 855.42 584.69 41/25
95 864.53 590.91 28/17
96 873.63 597.13
97 882.73 603.35
98 891.83 609.57 72/43
99 900.93 615.79 37/22, 69/41
100 910.03 622.01 22/13
101 919.13 628.23 17/10
102 928.23 634.45
103 937.33 640.67
104 946.43 646.89 19/11
105 955.53 653.11 33/19
106 964.63 659.33
107 973.73 665.55
108 982.83 671.77 30/17
109 991.93 677.99 39/22, 55/31
110 1001.03 684.21 41/23, 66/37
111 1010.13 690.43 43/24, 52/29
112 1019.23 696.65
113 1028.33 702.87
114 1037.43 709.09 51/28
115 1046.53 715.31
116 1055.63 721.53 46/25
117 1064.73 727.75 37/20
118 1073.83 733.97
119 1082.93 740.19
120 1092.03 746.41 47/25, 62/33
121 1101.13 752.63 17/9
122 1110.23 758.85 19/10
123 1119.33 765.07 21/11
124 1128.43 771.29
125 1137.53 777.51 27/14
126 1146.63 783.73
127 1155.73 789.95 39/20
128 1164.83 796.17 49/25
129 1173.93 802.39 65/33
130 1183.03 808.61
131 1192.13 814.83
132 1201.23 821.05
133 1210.34 827.27
134 1219.44 833.49
135 1228.54 839.71 63/31
136 1237.64 845.93 47/23
137 1246.74 852.15 37/18
138 1255.84 858.37 31/15
139 1264.94 864.59 27/13
140 1274.04 870.81
141 1283.14 877.03
142 1292.24 883.25
143 1301.34 889.47 70/33
144 1310.44 895.69
145 1319.54 901.91 15/7
146 1328.64 908.13 28/13
147 1337.74 914.35 13/6
148 1346.84 920.57 37/17
149 1355.94 926.79
150 1365.04 933.01 11/5
151 1374.14 939.23 42/19
152 1383.24 945.45 20/9
153 1392.34 951.67 38/17
154 1401.44 957.89
155 1410.54 964.11 70/31
156 1419.64 970.33
157 1428.74 976.56
158 1437.84 982.78 39/17
159 1446.94 989 30/13
160 1456.04 995.22 51/22
161 1465.14 1001.44
162 1474.24 1007.66
163 1483.34 1013.88
164 1492.44 1020.1 45/19
165 1501.54 1026.32 50/21
166 1510.64 1032.54
167 1519.74 1038.76
168 1528.84 1044.98
169 1537.94 1051.2
170 1547.04 1057.42 22/9
171 1556.15 1063.64
172 1565.25 1069.86 42/17
173 1574.35 1076.08 72/29
174 1583.45 1082.3
175 1592.55 1088.52
176 1601.65 1094.74
177 1610.75 1100.96
178 1619.85 1107.18 51/20
179 1628.95 1113.4
180 1638.05 1119.62
181 1647.15 1125.84 44/17, 57/22
182 1656.25 1132.06
183 1665.35 1138.28 34/13
184 1674.45 1144.5 50/19
185 1683.55 1150.72 37/14
186 1692.65 1156.94
187 1701.75 1163.16
188 1710.85 1169.38 43/16
189 1719.95 1175.6 27/10
190 1729.05 1181.82 19/7
191 1738.15 1188.04
192 1747.25 1194.26
193 1756.35 1200.48
194 1765.45 1206.7
195 1774.55 1212.92 39/14
196 1783.65 1219.14
197 1792.75 1225.36 31/11
198 1801.85 1231.58
199 1810.95 1237.8 37/13
200 1820.05 1244.02
201 1829.15 1250.24
202 1838.25 1256.46
203 1847.35 1262.68
204 1856.45 1268.9 38/13
205 1865.55 1275.12
206 1874.65 1281.34 62/21, 65/22
207 1883.75 1287.56
208 1892.85 1293.78
209 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 209edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 -1.63 +1.23 -1.73 +3.70 +0.00 -0.40 -1.60 +2.47
Relative (%) +13.6 +0.0 +27.1 -17.9 +13.6 -19.0 +40.7 +0.0 -4.4 -17.6 +27.1
Steps
(reduced)
132
(132)
209
(0)
264
(55)
306
(97)
341
(132)
370
(161)
396
(187)
418
(0)
438
(20)
456
(38)
473
(55)
Approximation of harmonics in 209edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.40 -0.49 -1.63 -4.16 +0.09 +1.23 -1.37 +0.84 -1.73 -0.36 -4.52
Relative (%) +4.4 -5.4 -17.9 -45.7 +0.9 +13.6 -15.0 +9.2 -19.0 -4.0 -49.6
Steps
(reduced)
488
(70)
502
(84)
515
(97)
527
(109)
539
(121)
550
(132)
560
(142)
570
(152)
579
(161)
588
(170)
596
(178)