← 37ed7/3 38ed7/3 39ed7/3 →
Prime factorization 2 × 19
Step size 38.6019 ¢ 
Octave 31\38ed7/3 (1196.66 ¢)
(semiconvergent)
Twelfth 49\38ed7/3 (1891.49 ¢)
Consistency limit 8
Distinct consistency limit 8

38 equal divisions of 7/3 (abbreviated 38ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 38 equal parts of about 38.6 ¢ each. Each step represents a frequency ratio of (7/3)1/38, or the 38th root of 7/3.

While 38ed7/3 fails to accurately represent low primes, it provides great approximations of the 13th, 17th, 19th, and a multitude of higher prime harmonics, and also handles the interval of 5/3 well. But 38ed7/3 should, most of all, be noted for the exceptional quality of its approximation to 11/9, which is a mere 0.0088 cents off from just. Its natural subgroup in the 19-limit is 7/3.5/3.11/9.13.17.19, but this can extend to include higher primes, especially 29 and 31.


Approximation of prime harmonics in 38ed7/3
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) -3.34 -10.46 -6.98 -10.46 +17.68 -1.31 -2.52 -2.07 +14.59 -0.70 -0.35 +2.16 +17.45 +12.20 +12.62
Relative (%) -8.7 -27.1 -18.1 -27.1 +45.8 -3.4 -6.5 -5.4 +37.8 -1.8 -0.9 +5.6 +45.2 +31.6 +32.7
Steps
(reduced)
31
(31)
49
(11)
72
(34)
87
(11)
108
(32)
115
(1)
127
(13)
132
(18)
141
(27)
151
(37)
154
(2)
162
(10)
167
(15)
169
(17)
173
(21)
Approximation of odd harmonics in 38ed7/3
Harmonic 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Error Absolute (¢) -10.46 -6.98 -10.46 +17.67 +17.68 -1.31 -17.44 -2.52 -2.07 +17.67 +14.59 -13.96 +7.21 -0.70 -0.35
Relative (%) -27.1 -18.1 -27.1 +45.8 +45.8 -3.4 -45.2 -6.5 -5.4 +45.8 +37.8 -36.2 +18.7 -1.8 -0.9
Steps
(reduced)
49
(11)
72
(34)
87
(11)
99
(23)
108
(32)
115
(1)
121
(7)
127
(13)
132
(18)
137
(23)
141
(27)
144
(30)
148
(34)
151
(37)
154
(2)

Intervals

Degrees Enneatonic ed11\9~ed7/3
1 G^ 38.5965 38.6019
Jbv Abv
2 Jb Ab 77.193 77.2037
3 Jb^ Ab^ 115.7895 115.8056
G#v
4 G# 154.386 154.4075
5 G#^ 192.98245 193.0093
Jv Av
6 J A 231.57895 231.6112
7 J^/Av A^/Bv 270.1754 270.2131
8 A B 308.7719 308.8149
9 A^/Bbv B^/Cbv 347.3684 347.4168
10 Bb Cb 385.9649 386.0187
11 Bb^/A#v Cb^/B#v 424.5614 424.6205
12 A# B# 463.1579 463.2224
13 A#^/Bv B#^/Cv 501.7544 502.6667
14 B C 540.3509 540.4261
15 B^/Cv C^/Qv 578.9474 579.028
16 C Q 617.5439 617.6299
17 C^/Qbv Q^/Dbv 656.14035 656.2317
18 Qb Db 694.7368 694.8336
19 Qb^/C#v Db^/Q#v 733.3 733.43545
20 C# Q# 771.9298 772.0373
21 C#^/Qv Q#/Dv 810.5263 810.6392
22 Q D 849.1228 849.24105
23 Q^/Dv D^/Sv 887.7193 887.8429
24 D S 926.3158 926.4448
25 D^ S^ 964.9123 965.04665
Ebv
26 Eb 1003.5088 1003.6485
27 Eb^ 1042.1053 1042.2504
D#v S#v
28 D# S# 1080.70175 1080.85225
29 D#^ S#^ 1119.29825 1119.4541
Ev
30 E 1157.8947 1158.0559
31 E^/Fbv 1196.4912 1196.6578
32 Fb 1235.0877 1235.2567
33 Fb^/E#v 1273.68425 1273.8616
34 E# 1312.2807 1312.4634
35 E#^/Fv 1350.8772 1351.0654
36 F 1389.4737 1389.6672
37 F^/Gv 1428.0702 1428.269
38 G 1466.6 1466.8709