This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 471edo 472edo 473edo →
Prime factorization 23 × 59
Step size 2.54237 ¢ 
Fifth 276\472 (701.695 ¢) (→ 69\118)
Semitones (A1:m2) 44:36 (111.9 ¢ : 91.53 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

472edo is consistent to the 11-odd-limit. It is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma. In the 7-limit, it tempers out 2401/2400, 2460375/2458624, and 30623756184/30517578125; in the 11-limit, 9801/9800, 46656/46585, 117649/117612, and 234375/234256, supporting the maviloid temperament, the bisesqui temperament, and the octant temperament. Using the patent val, it tempers out 729/728, 1575/1573, 2200/2197, 4096/4095, and 21168/21125 in the 13-limit, so it also supports the 13-limit octant.

472edo is a zeta peak integer edo.

Prime harmonics

Approximation of prime harmonics in 472edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.26 +0.13 -0.18 +0.38 +1.00 -0.72 -0.06 -0.31 +0.08 -0.97
Relative (%) +0.0 -10.2 +5.0 -7.2 +14.8 +39.2 -28.2 -2.2 -12.1 +3.3 -38.1
Steps
(reduced)
472
(0)
748
(276)
1096
(152)
1325
(381)
1633
(217)
1747
(331)
1929
(41)
2005
(117)
2135
(247)
2293
(405)
2338
(450)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 32805/32768, [8 14 -13 [472 748 1096 1325]] +0.0435 0.0814 3.20
2.3.5.7.11 2401/2400, 9801/9800, 32805/32768, 46656/46585 [472 748 1096 1325 1633]] +0.0130 0.0950 3.74
2.3.5.7.11.13 729/728, 1575/1573, 2200/2197, 2401/2400, 4096/4095 [472 748 1096 1325 1633 1747]] -0.0341 0.1365 5.37

Rank-2 temperaments

Note: 5-limit temperaments supported by 118et are not included.

Table of rank-2 temperaments by generator
Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 69\472 175.42 448/405 Sesquiquartififths
1 137\472 348.31 57344/46875 Subneutral
1 205\472 521.19 875/648 Maviloid
2 69\472 175.42 448/405 Bisesqui
8 196\472
(19\472)
498.31
(48.31)
4/3
(36/35)
Octant