This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 638edo 639edo 640edo →
Prime factorization 32 × 71
Step size 1.87793 ¢ 
Fifth 374\639 (702.347 ¢)
Semitones (A1:m2) 62:47 (116.4 ¢ : 88.26 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

639edo is distinctly consistent in the 17-odd-limit. It has a sharp tendency, with harmonics of 3 to 17 all tuned sharp. The 639h val gives a reasonable approximation of harmonic 19, where it tempers out 2401/2400 and 4375/4374 in the 7-limit; 5632/5625 and 19712/19683 in the 11-limit; 2080/2079 and 4459/4455 in the 13-limit; 1156/1155, 2058/2057, and 2601/2600 in the 17-limit; 1216/1215, 1445/1444, 1540/1539, 2376/2375, and 2926/2925 in the 19-limit. It supports 11-limit ennealimmal and its 13-limit extension ennealimmalis.

Prime harmonics

Approximation of prime harmonics in 639edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.392 +0.541 +0.188 +0.795 +0.787 +0.209 -0.799 +0.834 -0.469 +0.504
Relative (%) +0.0 +20.9 +28.8 +10.0 +42.3 +41.9 +11.1 -42.6 +44.4 -25.0 +26.9
Steps
(reduced)
639
(0)
1013
(374)
1484
(206)
1794
(516)
2211
(294)
2365
(448)
2612
(56)
2714
(158)
2891
(335)
3104
(548)
3166
(610)

Subsets and supersets

Since 639 = 32 × 71, it has subset edos 3, 9, 71, and 213.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [1013 -639 [639 1013]] -0.1238 0.1238 6.59
2.3.5 [1 -27 18, [55 -1 -23 [639 1013 1484]] -0.1601 0.1134 6.04
2.3.5.7 2401/2400, 4375/4374, [58 -14 -13 -2 [639 1013 1484 1794]] -0.1369 0.1062 5.65
2.3.5.7.11 2401/2400, 4375/4374, 5632/5625, 161280/161051 [639 1013 1484 1794 2211]] -0.1554 0.1020 5.43
2.3.5.7.11.13 2080/2079, 2401/2400, 4375/4374, 5632/5625, 20480/20449 [639 1013 1484 1794 2211 2365]] -0.1650 0.0955 5.08
2.3.5.7.11.13.17 1156/1155, 2058/2057, 2080/2079, 2401/2400, 4375/4374, 5632/5625 [639 1013 1484 1794 2211 2365 2612]] -0.1487 0.0970 5.16
2.3.5.7.11.13.17.19 1156/1155, 1216/1215, 1445/1444, 2058/2057, 2080/2079, 2376/2375, 2401/2400 [639 1013 1484 1794 2211 2365 2612, 2715]] (639h) -0.1618 0.0971 5.17

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 53\639 99.53 18/17 Quindro
9 168\639
(26\639)
315.49
(48.83)
6/5
(36/35)
Ennealimmal / ennealimmalis