47edo

From Xenharmonic Wiki
Revision as of 01:36, 31 December 2011 by Wikispaces>Andrew_Heathwaite (**Imported revision 288886171 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-12-31 01:36:30 UTC.
The original revision id was 288886171.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #616161; font-size: 99%;">47 tone Equal Temperament</span>= 

**//47-EDO//** divides the octave into 47 equal parts of 25.5319 cents each. It has a fifth which is 12.5933 cents flat, unless you use the alternative fifth which is 12.9386 cents sharp. It has therefore not aroused much interest, but its best approximation to 9/8 is actually quite good, one-third of a cent sharp. It does a good job of approximating the 2.9.5.7.33.13.17.57.69 23-limit [[k*N subgroups|2*47 subgroup]] of the [[23-limit]], on which it tempers out the same commas as [[94edo]]. It provides a good tuning for [[Chromatic pairs#Baldy|baldy]] and [[Chromatic pairs#Silver|silver]] temperaments and relatives.

==Intervals of 47edo== 

||~ Degrees of 47edo ||~ Cents Value ||
|| 0 || 0 ||
|| 1 || 25.532 ||
|| 2 || 51.064 ||
|| 3 || 76.596 ||
|| 4 || 102.128 ||
|| 5 || 127.66 ||
|| 6 || 153.191 ||
|| 7 || 178.723 ||
|| 8 || 204.255 ||
|| 9 || 229.787 ||
|| 10 || 255.319 ||
|| 11 || 280.851 ||
|| 12 || 306.383 ||
|| 13 || 331.915 ||
|| 14 || 357.447 ||
|| 15 || 382.979 ||
|| 16 || 408.511 ||
|| 17 || 434.043 ||
|| 18 || 459.574 ||
|| 19 || 485.106 ||
|| 20 || 510.638 ||
|| 21 || 536.17 ||
|| 22 || 561.702 ||
|| 23 || 587.234 ||
|| 24 || 612.766 ||
|| 25 || 638.298 ||
|| 26 || 663.83 ||
|| 27 || 689.362 ||
|| 28 || 714.894 ||
|| 29 || 740.426 ||
|| 30 || 765.957 ||
|| 31 || 791.489 ||
|| 32 || 817.021 ||
|| 33 || 842.553 ||
|| 34 || 868.085 ||
|| 35 || 893.617 ||
|| 36 || 919.149 ||
|| 37 || 944.681 ||
|| 38 || 970.213 ||
|| 39 || 995.745 ||
|| 40 || 1021.277 ||
|| 41 || 1046.809 ||
|| 42 || 1072.34 ||
|| 43 || 1097.872 ||
|| 44 || 1123.404 ||
|| 45 || 1148.936 ||
|| 46 || 1174.468 ||

Original HTML content:

<html><head><title>47edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x47 tone Equal Temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #616161; font-size: 99%;">47 tone Equal Temperament</span></h1>
 <br />
<strong><em>47-EDO</em></strong> divides the octave into 47 equal parts of 25.5319 cents each. It has a fifth which is 12.5933 cents flat, unless you use the alternative fifth which is 12.9386 cents sharp. It has therefore not aroused much interest, but its best approximation to 9/8 is actually quite good, one-third of a cent sharp. It does a good job of approximating the 2.9.5.7.33.13.17.57.69 23-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*47 subgroup</a> of the <a class="wiki_link" href="/23-limit">23-limit</a>, on which it tempers out the same commas as <a class="wiki_link" href="/94edo">94edo</a>. It provides a good tuning for <a class="wiki_link" href="/Chromatic%20pairs#Baldy">baldy</a> and <a class="wiki_link" href="/Chromatic%20pairs#Silver">silver</a> temperaments and relatives.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x47 tone Equal Temperament-Intervals of 47edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals of 47edo</h2>
 <br />


<table class="wiki_table">
    <tr>
        <th>Degrees of 47edo<br />
</th>
        <th>Cents Value<br />
</th>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>25.532<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>51.064<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>76.596<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>102.128<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>127.66<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>153.191<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>178.723<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>204.255<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>229.787<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>255.319<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>280.851<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>306.383<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>331.915<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>357.447<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>382.979<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>408.511<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>434.043<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>459.574<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>485.106<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>510.638<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>536.17<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>561.702<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>587.234<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>612.766<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>638.298<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>663.83<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>689.362<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>714.894<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>740.426<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>765.957<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>791.489<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>817.021<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>842.553<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>868.085<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>893.617<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>919.149<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>944.681<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>970.213<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>995.745<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>1021.277<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>1046.809<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>1072.34<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>1097.872<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>1123.404<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>1148.936<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>1174.468<br />
</td>
    </tr>
</table>

</body></html>