39edo

From Xenharmonic Wiki
Revision as of 01:59, 6 June 2011 by Wikispaces>Osmiorisbendi (**Imported revision 234477952 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-06-06 01:59:10 UTC.
The original revision id was 234477952.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #007a22; font-size: 118%;">39 tone equal temperament</span>= 

If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO, **Hornbostel Temperament** and allied systems (like a 23 and 25 EDOs [1/3-tones]; 39 and 41 EDOs [1/5-tones]; 55 and 57 EDOs [1/7-tones]; 69 and 73 EDOs [1/9-tones] & 85 and 89 EDOs [1/11-tones]). However, its 23\39 fifth, five and three-quarters cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some few ways allied to 12-ET in supporting augene temperament, and is in fact an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|.

==__**39-EDO Intervals**__== 
|| **NOMENCLATURE** ||
|| **t** = Semisharp
**v** = Semiflat ||

|| **DEGREE** || **NOTE** || **CENTS** || **[[Nearest just interval|Nearest Just I]]nterval** || **Cents** || **Error** ||
|| 0 || **1** || 0 || **1/1** || 0 || **None** ||
|| 1 || 1t || 30.7692 || 57/56 || 30.6421 || +0.1271 ||
|| 2 || 1# || 61.5385 || 29/28 || 60.7513 || +0.7872 ||
|| 3 || 2b || 92.3077 || 39/37 || 91.1386 || +1.1691 ||
|| 4 || 2v || 123.0769 || 44/41 || 122.2555 || +0.8214 ||
|| 5 || 2 || 153.8462 || 35/32 || 155.1396 || -1.2934 ||
|| 6 || 2t || 184.6154 || 10/9 || 182.4037 || +2.2117 ||
|| **7·** || **2#** || **215.3846** || **17/15** || **216.6867** || **-1.3021** ||
|| 8 || 3b || 246.1538 || 15/13 || 247.7411 || -1.5873 ||
|| 9 || 3v || 276.9231 || 27/23 || 277.5907 || -0.6676 ||
|| 10 || 3 || 307.6923 || 43/36 || 307.6077 || +0.0846 ||
|| 11 || 3t || 338.4615 || 17/14 || 336.1295 || +2.332 ||
|| **12·** || **3#** || **369.2308** || **26/21** || **369.7468** || **-0.516** ||
|| 13 || 4b || 400 || 34/27 || 399.0904 || +0.9096 ||
|| 14 || 4v || 430.7692 || 41/32 || 429.0624 || +1.7068 ||
|| 15 || 4 || 461.5385 || 30/23 || 459.9944 || +1.5441 ||
|| 16 || 4t (5v) || 492.3077 || 85/64 || 491.2691 || +1.0386 ||
|| **17·** || **5** || **523.0769** || **23/17** || **523.3189** || **-0.242** ||
|| 18 || 5t || 553.8462 || 11/8 || 551.3179 || +2.5283 ||
|| 19 || 5# || 584.6154 || 7/5 || 582.5122 || +2.1032 ||
|| 20 || 6b || 615.3846 || 10/7 || 617.4878 || -2.1032 ||
|| 21 || 6v || 646.1538 || 16/11 || 648.6821 || -2.5283 ||
|| **22·** || **6** || **676.9231** || **34/23** || **676.6811** || **+0.242** ||
|| 23 || 6t || 707.6923 || 128/85 || 708.7309 || -1.0386 ||
|| 24 || 6# || 738.4615 || 23/15 || 740.0056 || -1.5441 ||
|| 25 || 7b || 769.2308 || 64/41 || 770.9376 || -1.7068 ||
|| 26 || 7v || 800 || 27/17 || 800.9096 || -0.9096 ||
|| **27·** || **7** || **830.7692** || **21/13** || **830.2532** || **+0.516** ||
|| 28 || 7t || 861.5385 || 28/17 || 863.8705 || -2.332 ||
|| 29 || 7# (A) || 892.3077 || 72/43 || 892.3923 || -0.0846 ||
|| 30 || 8b || 923.0769 || 46/27 || 922.4093 || +0.6676 ||
|| 31 || 8v || 953.8462 || 26/15 || 952.2589 || +1.5873 ||
|| **32·** || **8** || **984.6154** || **30/17** || **983.3133** || **+1.3021** ||
|| 33 || 8t || 1015.3846 || 9/5 || 1017.5963 || -2.2117 ||
|| 34 || 8# || 1046.1538 || 64/35 || 1044.8604 || +1.2934 ||
|| 35 || 9b || 1076.9231 || 41/22 || 1077.7445 || -0.8214 ||
|| 36 || 9v || 1107.6923 || 74/39 || 1108.8614 || -1.1691 ||
|| 37 || 9 || 1138.4615 || 56/29 || 1139.2487 || -0.7872 ||
|| 38 || 9t (1v) || 1169.2308 || 112/57 || 1169.3579 || -0.1271 ||
|| **39··(or 0)** || **1** || **1200** || **2/1** || **1200** || **None** ||

==__Instruments (prototypes):__== 

[[image:TECLADO_39-EDO.PNG caption="39-EDO Keyboard Classic Prototype."]]

[[image:Custom_700mm_5-str_Tricesanonaphonic_Guitar.png width="992" height="278" caption="Visualization of a 39-EDO Fretboard, by Tútim Deft"]]

==**__39 tone equal [[modes]]__:**== 

15 15 9 - [[MOSScales|MOS]] of type [[2L 1s]]
14 14 11 - [[MOSScales|MOS]] of type [[2L 1s]]
13 13 13 = [[3edo]]
11 11 11 6 - [[MOSScales|MOS]] of type [[3L 1s]]
10 10 10 9 - [[MOSScales|MOS]] of type [[3L 1s]]
11 3 11 11 3 - [[MOSScales|MOS]] of type [[3L 2s|3L 2s (father)]]
11 3 11 3 11 - <span style="cursor: pointer;">[[MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[3L 2s|3L 2s (father)]]</span>
9 6 9 9 6 - [[MOSScales|MOS]] of type [[3L 2s|3L 2s (father)]]
9 6 9 6 9 - <span style="cursor: pointer;">[[MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[3L 2s|3L 2s (father)]]</span>
9 9 9 9 3 - [[MOSScales|MOS]] of type [[4L 1s|4L 1s (bug)]]
9 3 9 9 9 - <span style="cursor: pointer;">[[MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[4L 1s|4L 1s (bug)]]</span>
8 8 8 8 7 - [[MOSScales|MOS]] of type [[4L 1s|4L 1s (bug)]]
10 3 10 3 10 3 - [[MOSScales|MOS]] of type [[3L 3s|3L 3s (augmented)]]
9 4 9 4 9 4 - [[MOSScales|MOS]] of type [[3L 3s|3L 3s (augmented)]]
8 5 8 5 8 5 - [[MOSScales|MOS]] of type [[3L 3s|3L 3s (augmented)]]
7 7 7 7 7 4 - [[MOSScales|MOS]] of type [[5L 1s|5L 1s (Grumpy hexatonic)]]
7 4 7 7 7 7 - <span style="cursor: pointer;">[[MOSScales|MOS]]</span> of type <span style="cursor: pointer;">[[5L 1s|5L 1s (Grumpy hexatonic)]]</span>
3 9 3 9 3 9 3 - [[MOSScales|MOS]] of type [[3L 4s|3L 4s (mosh)]]
5 5 7 5 5 5 7 - [[MOSScales|MOS]] of type [[2L 5s|2L 5s (mavila)]]
5 5 5 7 5 5 7 - [[MOSScales|MOS]] of type [[2L 5s|2L 5s (mavila)]]
5 7 5 5 7 5 5 - [[MOSScales|MOS]] of type [[2L 5s|2L 5s (mavila)]]
6 3 6 6 3 6 6 3 - [[MOSScales|MOS]] of type [[5L 3s|5L 3s (unfair father)]]
5 5 5 5 5 5 5 4 - [[MOSScales|MOS]] of type [[7L 1s|7L 1s (Grumpy octatonic)]]
5 4 5 5 5 5 5 5 - [[MOSScales|MOS]] of type [[7L 1s|7L 1s (Grumpy octatonic)]]
**5 5 5 2 5 5 5 5 2** - [[MOSScales|MOS]] of type [[7L 2s|7L 2s (mavila superdiatonic)]]
5 5 2 5 5 5 2 5 5 - [[MOSScales|MOS]] of type [[7L 2s|7L 2s (mavila superdiatonic)]]
5 5 3 5 5 3 5 5 3 - [[MOSScales|MOS]] of type [[6L 3s|6L 3s (unfair augmented)]]
5 4 4 5 4 4 5 4 4 - [[MOSScales|MOS]] of type [[3L 6s|3L 6s (fair augmented)]]
4 4 4 4 4 4 4 4 4 3 - [[MOSScales|MOS]] of type [[9L 1s|9L 1s (Grumpy decatonic)]]
4 4 3 4 4 4 4 4 4 4 - [[MOSScales|MOS]] of type [[9L 1s|9L 1s (Grumpy decatonic)]]
**3 3 5 3 3 3 5 3 3 3 5** - [[MOSScales|MOS]] of type [[3L 8s|3L 8s (undecimal anti-triatonic)]]
3 3 3 3 3 3 3 3 3 3 3 3 3 = [[13edo]]
**3 3 3 2 3 3 3 3 2 3 3 3 3 2** - [[MOSScales|MOS]] of type [[11L 3s|11L 3s (tetradecimal triatonic)]]
3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - [[MOSScales|MOS]] of type [[9L 6s]]
3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - [[MOSScales|MOS]] of type [[7L 9s]]
**2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3** - [[MOSScales|MOS]] of type [[5L 12s]]
2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - [[MOSScales|MOS]] of type [[3L 15s]]
**3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3** - <span style="cursor: pointer;">[[MOSScales|MOS]]</span> of type [[10L 9s]]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - [[MOSScales|MOS]] of type [[19L 1s]]
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - [[MOSScales|MOS]] of type [[17L 5s]]
**2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1** - [[MOSScales|MOS]] of type [[16L 7s]]
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - [[MOSScales|MOS]] of type [[13L 13s]]
**2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** - [[MOSScales|MOS]] of type [[10L 19s]]
2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - [[MOSScales|MOS]] of type [[8L 23s]]
2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 - [[MOSScales|MOS]] of type [[6L 27s]]

==__**Music:**__== 
[[http://www.zshare.net/audio/91064750374c9c88/|39 notes Equal per Octave with FM Synths and Carrillon]] by Ivor Darreg

Original HTML content:

<html><head><title>39edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x39 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #007a22; font-size: 118%;">39 tone equal temperament</span></h1>
 <br />
If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO, <strong>Hornbostel Temperament</strong> and allied systems (like a 23 and 25 EDOs [1/3-tones]; 39 and 41 EDOs [1/5-tones]; 55 and 57 EDOs [1/7-tones]; 69 and 73 EDOs [1/9-tones] &amp; 85 and 89 EDOs [1/11-tones]). However, its 23\39 fifth, five and three-quarters cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some few ways allied to 12-ET in supporting augene temperament, and is in fact an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is &lt;39 62 91 110 135|.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x39 tone equal temperament-39-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 --><u><strong>39-EDO Intervals</strong></u></h2>
 

<table class="wiki_table">
    <tr>
        <td><strong>NOMENCLATURE</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>t</strong> = Semisharp<br />
<strong>v</strong> = Semiflat<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td><strong>DEGREE</strong><br />
</td>
        <td><strong>NOTE</strong><br />
</td>
        <td><strong>CENTS</strong><br />
</td>
        <td><strong><a class="wiki_link" href="/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br />
</td>
        <td><strong>Cents</strong><br />
</td>
        <td><strong>Error</strong><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td><strong>1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>1/1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1t<br />
</td>
        <td>30.7692<br />
</td>
        <td>57/56<br />
</td>
        <td>30.6421<br />
</td>
        <td>+0.1271<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1#<br />
</td>
        <td>61.5385<br />
</td>
        <td>29/28<br />
</td>
        <td>60.7513<br />
</td>
        <td>+0.7872<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>2b<br />
</td>
        <td>92.3077<br />
</td>
        <td>39/37<br />
</td>
        <td>91.1386<br />
</td>
        <td>+1.1691<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2v<br />
</td>
        <td>123.0769<br />
</td>
        <td>44/41<br />
</td>
        <td>122.2555<br />
</td>
        <td>+0.8214<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2<br />
</td>
        <td>153.8462<br />
</td>
        <td>35/32<br />
</td>
        <td>155.1396<br />
</td>
        <td>-1.2934<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>2t<br />
</td>
        <td>184.6154<br />
</td>
        <td>10/9<br />
</td>
        <td>182.4037<br />
</td>
        <td>+2.2117<br />
</td>
    </tr>
    <tr>
        <td><strong>7·</strong><br />
</td>
        <td><strong>2#</strong><br />
</td>
        <td><strong>215.3846</strong><br />
</td>
        <td><strong>17/15</strong><br />
</td>
        <td><strong>216.6867</strong><br />
</td>
        <td><strong>-1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>3b<br />
</td>
        <td>246.1538<br />
</td>
        <td>15/13<br />
</td>
        <td>247.7411<br />
</td>
        <td>-1.5873<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>3v<br />
</td>
        <td>276.9231<br />
</td>
        <td>27/23<br />
</td>
        <td>277.5907<br />
</td>
        <td>-0.6676<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>3<br />
</td>
        <td>307.6923<br />
</td>
        <td>43/36<br />
</td>
        <td>307.6077<br />
</td>
        <td>+0.0846<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>3t<br />
</td>
        <td>338.4615<br />
</td>
        <td>17/14<br />
</td>
        <td>336.1295<br />
</td>
        <td>+2.332<br />
</td>
    </tr>
    <tr>
        <td><strong>12·</strong><br />
</td>
        <td><strong>3#</strong><br />
</td>
        <td><strong>369.2308</strong><br />
</td>
        <td><strong>26/21</strong><br />
</td>
        <td><strong>369.7468</strong><br />
</td>
        <td><strong>-0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>4b<br />
</td>
        <td>400<br />
</td>
        <td>34/27<br />
</td>
        <td>399.0904<br />
</td>
        <td>+0.9096<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>4v<br />
</td>
        <td>430.7692<br />
</td>
        <td>41/32<br />
</td>
        <td>429.0624<br />
</td>
        <td>+1.7068<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>4<br />
</td>
        <td>461.5385<br />
</td>
        <td>30/23<br />
</td>
        <td>459.9944<br />
</td>
        <td>+1.5441<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>4t (5v)<br />
</td>
        <td>492.3077<br />
</td>
        <td>85/64<br />
</td>
        <td>491.2691<br />
</td>
        <td>+1.0386<br />
</td>
    </tr>
    <tr>
        <td><strong>17·</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>523.0769</strong><br />
</td>
        <td><strong>23/17</strong><br />
</td>
        <td><strong>523.3189</strong><br />
</td>
        <td><strong>-0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>5t<br />
</td>
        <td>553.8462<br />
</td>
        <td>11/8<br />
</td>
        <td>551.3179<br />
</td>
        <td>+2.5283<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>5#<br />
</td>
        <td>584.6154<br />
</td>
        <td>7/5<br />
</td>
        <td>582.5122<br />
</td>
        <td>+2.1032<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>6b<br />
</td>
        <td>615.3846<br />
</td>
        <td>10/7<br />
</td>
        <td>617.4878<br />
</td>
        <td>-2.1032<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>6v<br />
</td>
        <td>646.1538<br />
</td>
        <td>16/11<br />
</td>
        <td>648.6821<br />
</td>
        <td>-2.5283<br />
</td>
    </tr>
    <tr>
        <td><strong>22·</strong><br />
</td>
        <td><strong>6</strong><br />
</td>
        <td><strong>676.9231</strong><br />
</td>
        <td><strong>34/23</strong><br />
</td>
        <td><strong>676.6811</strong><br />
</td>
        <td><strong>+0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>6t<br />
</td>
        <td>707.6923<br />
</td>
        <td>128/85<br />
</td>
        <td>708.7309<br />
</td>
        <td>-1.0386<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>6#<br />
</td>
        <td>738.4615<br />
</td>
        <td>23/15<br />
</td>
        <td>740.0056<br />
</td>
        <td>-1.5441<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>7b<br />
</td>
        <td>769.2308<br />
</td>
        <td>64/41<br />
</td>
        <td>770.9376<br />
</td>
        <td>-1.7068<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>7v<br />
</td>
        <td>800<br />
</td>
        <td>27/17<br />
</td>
        <td>800.9096<br />
</td>
        <td>-0.9096<br />
</td>
    </tr>
    <tr>
        <td><strong>27·</strong><br />
</td>
        <td><strong>7</strong><br />
</td>
        <td><strong>830.7692</strong><br />
</td>
        <td><strong>21/13</strong><br />
</td>
        <td><strong>830.2532</strong><br />
</td>
        <td><strong>+0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>7t<br />
</td>
        <td>861.5385<br />
</td>
        <td>28/17<br />
</td>
        <td>863.8705<br />
</td>
        <td>-2.332<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>7# (A)<br />
</td>
        <td>892.3077<br />
</td>
        <td>72/43<br />
</td>
        <td>892.3923<br />
</td>
        <td>-0.0846<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>8b<br />
</td>
        <td>923.0769<br />
</td>
        <td>46/27<br />
</td>
        <td>922.4093<br />
</td>
        <td>+0.6676<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>8v<br />
</td>
        <td>953.8462<br />
</td>
        <td>26/15<br />
</td>
        <td>952.2589<br />
</td>
        <td>+1.5873<br />
</td>
    </tr>
    <tr>
        <td><strong>32·</strong><br />
</td>
        <td><strong>8</strong><br />
</td>
        <td><strong>984.6154</strong><br />
</td>
        <td><strong>30/17</strong><br />
</td>
        <td><strong>983.3133</strong><br />
</td>
        <td><strong>+1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>8t<br />
</td>
        <td>1015.3846<br />
</td>
        <td>9/5<br />
</td>
        <td>1017.5963<br />
</td>
        <td>-2.2117<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>8#<br />
</td>
        <td>1046.1538<br />
</td>
        <td>64/35<br />
</td>
        <td>1044.8604<br />
</td>
        <td>+1.2934<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>9b<br />
</td>
        <td>1076.9231<br />
</td>
        <td>41/22<br />
</td>
        <td>1077.7445<br />
</td>
        <td>-0.8214<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>9v<br />
</td>
        <td>1107.6923<br />
</td>
        <td>74/39<br />
</td>
        <td>1108.8614<br />
</td>
        <td>-1.1691<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>9<br />
</td>
        <td>1138.4615<br />
</td>
        <td>56/29<br />
</td>
        <td>1139.2487<br />
</td>
        <td>-0.7872<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>9t (1v)<br />
</td>
        <td>1169.2308<br />
</td>
        <td>112/57<br />
</td>
        <td>1169.3579<br />
</td>
        <td>-0.1271<br />
</td>
    </tr>
    <tr>
        <td><strong>39··(or 0)</strong><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>2/1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2>
 <br />
<!-- ws:start:WikiTextLocalImageRule:596:&lt;img src=&quot;/file/view/TECLADO_39-EDO.PNG/258413072/TECLADO_39-EDO.PNG&quot; alt=&quot;39-EDO Keyboard Classic Prototype.&quot; title=&quot;39-EDO Keyboard Classic Prototype.&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/TECLADO_39-EDO.PNG/258413072/TECLADO_39-EDO.PNG" alt="TECLADO_39-EDO.PNG" title="TECLADO_39-EDO.PNG" /></td></tr><tr><td class="imageCaption">39-EDO Keyboard Classic Prototype.</td></tr></table><!-- ws:end:WikiTextLocalImageRule:596 --><br />
<br />
<!-- ws:start:WikiTextLocalImageRule:597:&lt;img src=&quot;/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/992x278/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png&quot; alt=&quot;Visualization of a 39-EDO Fretboard, by Tútim Deft&quot; title=&quot;Visualization of a 39-EDO Fretboard, by Tútim Deft&quot; style=&quot;height: 278px; width: 992px;&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/992x278/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" title="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" style="height: 278px; width: 992px;" /></td></tr><tr><td class="imageCaption">Visualization of a 39-EDO Fretboard, by Tútim Deft</td></tr></table><!-- ws:end:WikiTextLocalImageRule:597 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x39 tone equal temperament-39 tone equal modes:"></a><!-- ws:end:WikiTextHeadingRule:6 --><strong><u>39 tone equal <a class="wiki_link" href="/modes">modes</a></u>:</strong></h2>
 <br />
15 15 9 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%201s">2L 1s</a><br />
14 14 11 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%201s">2L 1s</a><br />
13 13 13 = <a class="wiki_link" href="/3edo">3edo</a><br />
11 11 11 6 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%201s">3L 1s</a><br />
10 10 10 9 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%201s">3L 1s</a><br />
11 3 11 11 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (father)</a><br />
11 3 11 3 11 - <span style="cursor: pointer;"><a class="wiki_link" href="/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/3L%202s">3L 2s (father)</a></span><br />
9 6 9 9 6 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (father)</a><br />
9 6 9 6 9 - <span style="cursor: pointer;"><a class="wiki_link" href="/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/3L%202s">3L 2s (father)</a></span><br />
9 9 9 9 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (bug)</a><br />
9 3 9 9 9 - <span style="cursor: pointer;"><a class="wiki_link" href="/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/4L%201s">4L 1s (bug)</a></span><br />
8 8 8 8 7 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (bug)</a><br />
10 3 10 3 10 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (augmented)</a><br />
9 4 9 4 9 4 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (augmented)</a><br />
8 5 8 5 8 5 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (augmented)</a><br />
7 7 7 7 7 4 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/5L%201s">5L 1s (Grumpy hexatonic)</a><br />
7 4 7 7 7 7 - <span style="cursor: pointer;"><a class="wiki_link" href="/MOSScales">MOS</a></span> of type <span style="cursor: pointer;"><a class="wiki_link" href="/5L%201s">5L 1s (Grumpy hexatonic)</a></span><br />
3 9 3 9 3 9 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%204s">3L 4s (mosh)</a><br />
5 5 7 5 5 5 7 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (mavila)</a><br />
5 5 5 7 5 5 7 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (mavila)</a><br />
5 7 5 5 7 5 5 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (mavila)</a><br />
6 3 6 6 3 6 6 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/5L%203s">5L 3s (unfair father)</a><br />
5 5 5 5 5 5 5 4 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%201s">7L 1s (Grumpy octatonic)</a><br />
5 4 5 5 5 5 5 5 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%201s">7L 1s (Grumpy octatonic)</a><br />
<strong>5 5 5 2 5 5 5 5 2</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%202s">7L 2s (mavila superdiatonic)</a><br />
5 5 2 5 5 5 2 5 5 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%202s">7L 2s (mavila superdiatonic)</a><br />
5 5 3 5 5 3 5 5 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/6L%203s">6L 3s (unfair augmented)</a><br />
5 4 4 5 4 4 5 4 4 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%206s">3L 6s (fair augmented)</a><br />
4 4 4 4 4 4 4 4 4 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/9L%201s">9L 1s (Grumpy decatonic)</a><br />
4 4 3 4 4 4 4 4 4 4 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/9L%201s">9L 1s (Grumpy decatonic)</a><br />
<strong>3 3 5 3 3 3 5 3 3 3 5</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%208s">3L 8s (undecimal anti-triatonic)</a><br />
3 3 3 3 3 3 3 3 3 3 3 3 3 = <a class="wiki_link" href="/13edo">13edo</a><br />
<strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/11L%203s">11L 3s (tetradecimal triatonic)</a><br />
3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/9L%206s">9L 6s</a><br />
3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%209s">7L 9s</a><br />
<strong>2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/5L%2012s">5L 12s</a><br />
2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%2015s">3L 15s</a><br />
<strong>3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3</strong> - <span style="cursor: pointer;"><a class="wiki_link" href="/MOSScales">MOS</a></span> of type <a class="wiki_link" href="/10L%209s">10L 9s</a><br />
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/19L%201s">19L 1s</a><br />
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/17L%205s">17L 5s</a><br />
<strong>2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/16L%207s">16L 7s</a><br />
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/13L%2013s">13L 13s</a><br />
<strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong> - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/10L%2019s">10L 19s</a><br />
2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/8L%2023s">8L 23s</a><br />
2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 - <a class="wiki_link" href="/MOSScales">MOS</a> of type <a class="wiki_link" href="/6L%2027s">6L 27s</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="x39 tone equal temperament-Music:"></a><!-- ws:end:WikiTextHeadingRule:8 --><u><strong>Music:</strong></u></h2>
 <a class="wiki_link_ext" href="http://www.zshare.net/audio/91064750374c9c88/" rel="nofollow">39 notes Equal per Octave with FM Synths and Carrillon</a> by Ivor Darreg</body></html>