1L 9s

From Xenharmonic Wiki
Revision as of 16:56, 11 February 2015 by Wikispaces>JosephRuhf (**Imported revision 540666842 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-02-11 16:56:45 UTC.
The original revision id was 540666842.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
||||||||||~ Generator
(octave fraction) ||~ Generator
(cents) ||~ Comments ||
|| 0\1 ||   ||   ||   ||   || 0 ||=   ||
||   ||   ||   ||   || 1\14 || 85 5/7 ||=   ||
||   ||   ||   || 1\13 ||   || 92 4/13 ||= L/s = 4 ||
||   ||   ||   ||   || 2\25 || 96 ||=   ||
||   ||   ||   ||   ||   || 1200\(9+3*2^(1/75)) ||   ||
||   ||   || 1\12 ||   ||   || 100 ||= L/s = 3 ||
||   ||   ||   ||   ||   || 1200\(9+3*2^(1/75)) ||   ||
||   ||   ||   ||   || 3\35 || 102 6/7 ||=   ||
||   ||   ||   || 2\23 ||   || 104.347826 ||=   ||
||   ||   ||   ||   || 3\34 || 105.882353 ||=   ||
||   || 1\11 ||   ||   ||   || 109 1/11 ||=   ||
||   ||   ||   ||   || 4\43 || 111.627907 ||=   ||
||   ||   ||   || 3\32 ||   || 112.5 ||=   ||
||   ||   ||   ||   || 5\53 || 113.207547 ||=   ||
||   ||   || 2\21 ||   ||   || 114 2/7 ||=   ||
||   ||   ||   ||   || 5\52 || 115 5/13 ||=   ||
||   ||   ||   || 3\31 ||   || 116.129032 ||=   ||
||   ||   ||   ||   || 4\41 || 117 3/41 ||=   ||
|| 1\10 ||   ||   ||   ||   || 120 ||=   ||

Original HTML content:

<html><head><title>1L 9s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &quot;Happy&quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.<br />


<table class="wiki_table">
    <tr>
        <th colspan="5">Generator<br />
(octave fraction)<br />
</th>
        <th>Generator<br />
(cents)<br />
</th>
        <th>Comments<br />
</th>
    </tr>
    <tr>
        <td>0\1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\14<br />
</td>
        <td>85 5/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\13<br />
</td>
        <td><br />
</td>
        <td>92 4/13<br />
</td>
        <td style="text-align: center;">L/s = 4<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\25<br />
</td>
        <td>96<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200\(9+3*2^(1/75))<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\12<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>100<br />
</td>
        <td style="text-align: center;">L/s = 3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200\(9+3*2^(1/75))<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\35<br />
</td>
        <td>102 6/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\23<br />
</td>
        <td><br />
</td>
        <td>104.347826<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\34<br />
</td>
        <td>105.882353<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1\11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>109 1/11<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\43<br />
</td>
        <td>111.627907<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\32<br />
</td>
        <td><br />
</td>
        <td>112.5<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\53<br />
</td>
        <td>113.207547<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\21<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>114 2/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\52<br />
</td>
        <td>115 5/13<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\31<br />
</td>
        <td><br />
</td>
        <td>116.129032<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\41<br />
</td>
        <td>117 3/41<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td>1\10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>120<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>