15edt

From Xenharmonic Wiki
Revision as of 14:21, 21 August 2011 by Wikispaces>Kosmorsky (**Imported revision 247416427 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Kosmorsky and made on 2011-08-21 14:21:35 UTC.
The original revision id was 247416427.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse; line-height: normal;">15 Equal Divisions of the Tritave</span>= 

|| Degrees || Cents || Approximate Ratios ||
|| 0 || 0 || <span style="color: #660000;">[[1_1|1/1]]</span> ||
|| 1 || 126.797 || [[14_13|14/13]], [[15_14|15/14]], [[16_15|16/15]], 29/27 ||
|| 2 || 253.594 || 15/13 ||
|| 3 || 380.391 || <span style="color: #660000;">[[5_4|5/4]]</span> ||
|| 4 || 507.188 || [[4_3|4/3]] ||
|| 5 || 633.985 || [[13_9|13/9]] ||
|| 6 || 760.782 || <span style="color: #660000;">[[14_9|14/9]]</span> ||
|| 7 || 887.579 || [[5_3|5/3]] ||
|| 8 || 1014.376 || [[9_5|9/5]], 17/9 ||
|| 9 || 1141.173 || <span style="color: #660000;">[[27_14|27/14]]</span> ||
|| 10 || 1267.970 || 27/13 ||
|| 11 || 1394.767 || 9/4 ([[9_8|9/8]] plus an octave) ||
|| 12 || 1521.564 || 12/5 (<span style="color: #660000;">[[6_5|6/5]]</span> plus an octave) ||
|| 13 || 1648.361 || 13/5 ([[13_10|13/10]] plus an octave) ||
|| 14 || 1775.158 || 14/5 ([[7_5|7/5]] plus an octave) ||
|| 15 || 1901.955 || 3/1 ||

15edt contains 4 intervals from [[5edt]] and 2 intervals from [[3edt]], meaning that it contains 6 redundant intervals and 8 new intervals. The new intervals introduced include good approximations to 15/14, 15/13, 4/3, 5/3 and their tritave inverses. This allows for new chord possibilities such as 1:3:4:5:9:12:13:14:15:16...

15edt also contains a 5L5s MOS similar to Blackwood Decatonic, which I call Ebony. This MOS has a period of 1/5 of the tritave and the generator is a single step. The major scale is sLsLsLsLsL, and the minor scale is LsLsLsLsLs.

15edt approximates the 5th and 13th harmonics (and 29th) very well. Taking these as consonances one obtains an 3L+3s MOS "augmented scale", in which three 13/9 intervals close to a tritave, and a 5th harmonic is stacked on each of these.

Original HTML content:

<html><head><title>15edt</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x15 Equal Divisions of the Tritave"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse; line-height: normal;">15 Equal Divisions of the Tritave</span></h1>
 <br />


<table class="wiki_table">
    <tr>
        <td>Degrees<br />
</td>
        <td>Cents<br />
</td>
        <td>Approximate Ratios<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/1_1">1/1</a></span><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>126.797<br />
</td>
        <td><a class="wiki_link" href="/14_13">14/13</a>, <a class="wiki_link" href="/15_14">15/14</a>, <a class="wiki_link" href="/16_15">16/15</a>, 29/27<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>253.594<br />
</td>
        <td>15/13<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>380.391<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/5_4">5/4</a></span><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>507.188<br />
</td>
        <td><a class="wiki_link" href="/4_3">4/3</a><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>633.985<br />
</td>
        <td><a class="wiki_link" href="/13_9">13/9</a><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>760.782<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/14_9">14/9</a></span><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>887.579<br />
</td>
        <td><a class="wiki_link" href="/5_3">5/3</a><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>1014.376<br />
</td>
        <td><a class="wiki_link" href="/9_5">9/5</a>, 17/9<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1141.173<br />
</td>
        <td><span style="color: #660000;"><a class="wiki_link" href="/27_14">27/14</a></span><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>1267.970<br />
</td>
        <td>27/13<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>1394.767<br />
</td>
        <td>9/4 (<a class="wiki_link" href="/9_8">9/8</a> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>1521.564<br />
</td>
        <td>12/5 (<span style="color: #660000;"><a class="wiki_link" href="/6_5">6/5</a></span> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>1648.361<br />
</td>
        <td>13/5 (<a class="wiki_link" href="/13_10">13/10</a> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>1775.158<br />
</td>
        <td>14/5 (<a class="wiki_link" href="/7_5">7/5</a> plus an octave)<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>1901.955<br />
</td>
        <td>3/1<br />
</td>
    </tr>
</table>

<br />
15edt contains 4 intervals from <a class="wiki_link" href="/5edt">5edt</a> and 2 intervals from <a class="wiki_link" href="/3edt">3edt</a>, meaning that it contains 6 redundant intervals and 8 new intervals. The new intervals introduced include good approximations to 15/14, 15/13, 4/3, 5/3 and their tritave inverses. This allows for new chord possibilities such as 1:3:4:5:9:12:13:14:15:16...<br />
<br />
15edt also contains a 5L5s MOS similar to Blackwood Decatonic, which I call Ebony. This MOS has a period of 1/5 of the tritave and the generator is a single step. The major scale is sLsLsLsLsL, and the minor scale is LsLsLsLsLs.<br />
<br />
15edt approximates the 5th and 13th harmonics (and 29th) very well. Taking these as consonances one obtains an 3L+3s MOS &quot;augmented scale&quot;, in which three 13/9 intervals close to a tritave, and a 5th harmonic is stacked on each of these.</body></html>