102edo

From Xenharmonic Wiki
Revision as of 21:17, 2 July 2011 by Wikispaces>genewardsmith (**Imported revision 239785937 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-07-02 21:17:43 UTC.
The original revision id was 239785937.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**102edo** is the [[equal division of the octave]] into 102 steps of size 11.765 [[cent]]s each. In the [[5-limit]] it [[tempering out|tempers out]] the same [[comma]]s (2048/2025, 15625/15552, 20000/19683) as [[34edo]]. In the [[7-limit]] it tempers out 686/675 and 1029/1024; in the [[11-limit]] 385/384, 441/440 and 4000/3993; in the [[13-limit]] 91/90 and 169/168; in the [[17-limit]] 136/135 and 154/153; and in the [[19-limit]] 133/132 and 190/189. It is the [[optimal patent val]] for 13-limit [[Diaschismic family|echidnic temperament]], and the rank five temperament tempering out 91/90.

Original HTML content:

<html><head><title>102edo</title></head><body><strong>102edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 102 steps of size 11.765 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> the same <a class="wiki_link" href="/comma">comma</a>s (2048/2025, 15625/15552, 20000/19683) as <a class="wiki_link" href="/34edo">34edo</a>. In the <a class="wiki_link" href="/7-limit">7-limit</a> it tempers out 686/675 and 1029/1024; in the <a class="wiki_link" href="/11-limit">11-limit</a> 385/384, 441/440 and 4000/3993; in the <a class="wiki_link" href="/13-limit">13-limit</a> 91/90 and 169/168; in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153; and in the <a class="wiki_link" href="/19-limit">19-limit</a> 133/132 and 190/189. It is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 13-limit <a class="wiki_link" href="/Diaschismic%20family">echidnic temperament</a>, and the rank five temperament tempering out 91/90.</body></html>