Würschmidt family

From Xenharmonic Wiki
Revision as of 15:39, 21 December 2011 by Wikispaces>genewardsmith (**Imported revision 288008360 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-21 15:39:41 UTC.
The original revision id was 288008360.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
=Würschmidt= 
The [[xenharmonic/5-limit|5-limit]] parent comma for the wuerschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its [[xenharmonic/monzo|monzo]] is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the [[xenharmonic/generator|generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[xenharmonic/minimax tuning|minimax tuning]]. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[xenharmonic/MOS|MOS]] all possibilities.

[[xenharmonic/POTE tuning|POTE generator]]: 387.799

Map: [<1 7 3|, <0 -8 -1|]

EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/34edo|34]], [[xenharmonic/65edo|65]], [[xenharmonic/99edo|99]], [[xenharmonic/164edo|164]], [[xenharmonic/721edo|721c]], [[xenharmonic/885edo|885c]]

==Seven limit children== 
The second comma of the [[xenharmonic/Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>.

=Würschmidt= 
Würschmidt, aside from the commas listed above, also tempers out 225/224. [[xenharmonic/31edo|31edo]] or [[xenharmonic/127edo|127edo]] can be used as tunings. Würschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[xenharmonic/127edo|127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.

Commas: 225/224, 8748/8575

[[xenharmonic/POTE tuning|POTE generator]]: 387.383

Map: [<1 7 3 15|, <0 -8 -1 -18|]
EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/96edo|96]], [[xenharmonic/127edo|127]], [[xenharmonic/285edo|28bd]], [[xenharmonic/412edo|412bd]]
Badness: 0.0508

==11-limit== 
Commas: 99/98, 176/175, 243/242

POTE generator: ~5/4 = 387.447

Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|]
EDOs: 31, 65d, 96, 127, 223d
Badness: 0.0244

=Worschmidt= 
Worschmidt tempers out 126/125 rather than 225/224, and can use [[xenharmonic/31edo|31edo]], [[xenharmonic/34edo|34edo]], or [[xenharmonic/127edo|127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.

Commas: 126/125, 33075/32768

[[xenharmonic/POTE tuning|POTE generator]]: 387.392

Map: [<1 7 3 -6|, <0 -8 -1 13|]
EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/65edo|65]], [[xenharmonic/96edo|96d]], [[xenharmonic/127edo|127d]]
Badness: 0.0646

==11-limit== 
Commas: 126/125, 243/242, 385/384

POTE generator: ~5/4 = 387.407

Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|]
EDOs: 31, 65, 96d, 127d
Badness: 0.0334

=Whirrschmidt= 
[[xenharmonic/99edo|99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie.

Commas: 4375/4374, 393216/390625

[[xenharmonic/POTE tuning|POTE generator]]: 387.881

Map: [<1 7 3 38|, <0 -8 -1 -52|]

EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/34edo|34]], [[xenharmonic/65edo|65]], [[xenharmonic/99edo|99]]

=Hemiwürschmidt= 
Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[xenharmonic/68edo|68edo]], [[xenharmonic/99edo|99edo]] and [[xenharmonic/130edo|130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28...

Commas: 2401/2400, 3136/3125

[[xenharmonic/POTE tuning|POTE generator]]: ~28/25 = 193.898

Map: [<1 15 4 7|, <0 -16 -2 -5|]
<<16 2 5 -34 -37 6||
EDOs: [[xenharmonic/6edo|6]], [[xenharmonic/31edo|31]], [[xenharmonic/37edo|37]], [[xenharmonic/68edo|68]], [[xenharmonic/99edo|99]], [[xenharmonic/229edo|229]], [[xenharmonic/328edo|328]], [[xenharmonic/557edo|557c]], [[xenharmonic/885edo|885c]]
Badness: 0.0203

==11-limit== 
Commas: 243/242, 441/440, 3136/3125

[[xenharmonic/POTE tuning|POTE generator]]: ~28/25 = 193.840

Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|]
EDOs: 31, 99e, 130, 650ce, 811ce
Badness: 0.0211
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span>
=Relationships to other temperaments= 
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.

Original HTML content:

<html><head><title>Würschmidt family</title></head><body><!-- ws:start:WikiTextTocRule:20:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><a href="#Würschmidt">Würschmidt</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Würschmidt">Würschmidt</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#Worschmidt">Worschmidt</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Whirrschmidt">Whirrschmidt</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#Hemiwürschmidt">Hemiwürschmidt</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --> | <a href="#Relationships to other temperaments">Relationships to other temperaments</a><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: -->
<!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Würschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Würschmidt</h1>
 The <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit">5-limit</a> parent comma for the wuerschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its <a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo">monzo</a> is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator">generator</a> is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning">minimax tuning</a>. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> all possibilities.<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.799<br />
<br />
Map: [&lt;1 7 3|, &lt;0 -8 -1|]<br />
<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/164edo">164</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/721edo">721c</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/885edo">885c</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Würschmidt-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:2 -->Seven limit children</h2>
 The second comma of the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Würschmidt"></a><!-- ws:end:WikiTextHeadingRule:4 -->Würschmidt</h1>
 Würschmidt, aside from the commas listed above, also tempers out 225/224. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> or <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> can be used as tunings. Würschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.<br />
<br />
Commas: 225/224, 8748/8575<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.383<br />
<br />
Map: [&lt;1 7 3 15|, &lt;0 -8 -1 -18|]<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/96edo">96</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/285edo">28bd</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/412edo">412bd</a><br />
Badness: 0.0508<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Würschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
 Commas: 99/98, 176/175, 243/242<br />
<br />
POTE generator: ~5/4 = 387.447<br />
<br />
Map: [&lt;1 7 3 15 17|, &lt;0 -8 -1 -18 -20|]<br />
EDOs: 31, 65d, 96, 127, 223d<br />
Badness: 0.0244<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Worschmidt"></a><!-- ws:end:WikiTextHeadingRule:8 -->Worschmidt</h1>
 Worschmidt tempers out 126/125 rather than 225/224, and can use <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34edo</a>, or <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.<br />
<br />
Commas: 126/125, 33075/32768<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.392<br />
<br />
Map: [&lt;1 7 3 -6|, &lt;0 -8 -1 13|]<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/96edo">96d</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127d</a><br />
Badness: 0.0646<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Worschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:10 -->11-limit</h2>
 Commas: 126/125, 243/242, 385/384<br />
<br />
POTE generator: ~5/4 = 387.407<br />
<br />
Map: [&lt;1 7 3 -6 17|, &lt;0 -8 -1 13 -20|]<br />
EDOs: 31, 65, 96d, 127d<br />
Badness: 0.0334<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Whirrschmidt"></a><!-- ws:end:WikiTextHeadingRule:12 -->Whirrschmidt</h1>
 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99edo</a> is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.<br />
<br />
Commas: 4375/4374, 393216/390625<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.881<br />
<br />
Map: [&lt;1 7 3 38|, &lt;0 -8 -1 -52|]<br />
<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Hemiwürschmidt"></a><!-- ws:end:WikiTextHeadingRule:14 -->Hemiwürschmidt</h1>
 Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/68edo">68edo</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/130edo">130edo</a> can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...<br />
<br />
Commas: 2401/2400, 3136/3125<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: ~28/25 = 193.898<br />
<br />
Map: [&lt;1 15 4 7|, &lt;0 -16 -2 -5|]<br />
&lt;&lt;16 2 5 -34 -37 6||<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/6edo">6</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/37edo">37</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/68edo">68</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/229edo">229</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/328edo">328</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/557edo">557c</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/885edo">885c</a><br />
Badness: 0.0203<br />
<br />
<!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Hemiwürschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:16 -->11-limit</h2>
 Commas: 243/242, 441/440, 3136/3125<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: ~28/25 = 193.840<br />
<br />
Map: [&lt;1 15 4 7 37|, &lt;0 -16 -2 -5 -40|]<br />
EDOs: 31, 99e, 130, 650ce, 811ce<br />
Badness: 0.0211<br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span><br />
<!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Relationships to other temperaments"></a><!-- ws:end:WikiTextHeadingRule:18 -->Relationships to other temperaments</h1>
 2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares">skwares</a> as a 2.3.7.11 temperament.</body></html>