Otones8-16

From Xenharmonic Wiki
Revision as of 23:12, 8 October 2011 by Wikispaces>Andrew_Heathwaite (**Imported revision 262909310 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-10-08 23:12:13 UTC.
The original revision id was 262909310.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

"Otones 8-16" refers to a scale generated by taking the 8th through 16th overtone over some fundamental. Dante Rosati calls this the "Diatonic Harmonic Series Scale" and Denny Genovese calls this "Mode 8 of the Harmonic Series". It may be treated as octave-repeating, or not. The frequency ratio between the steps of the scale can be represented as 8:9:10:11:12:13:14:15:16. Note that 16, being a doubling of 8, is an octave above the first tone.

Otones 8-16 contains eight tones in the octave and eight different step sizes. The steps get smaller as the scale ascends:

|| harmonic || ratio from 1/1 || ratio in between ("step") || names || cents value, scale member || cents value, step ||
|| 8 || 1/1 ||   || unison, perfect prime || 0.00 ||   ||
||   ||   || 9:8 || large whole step; Pythagorean whole step; major whole tone ||   || 203.91 ||
|| 9 || 9/8 ||   || large whole step; Pythagorean whole step; major whole tone || 203.91 ||   ||
||   ||   || 10:9 || small whole step; 5-limit whole step; minor whole tone ||   || 182.40 ||
|| 10 || 5/4 ||   || 5-limit major third || 386.31 ||   ||
||   ||   || 11:10 || large undecimal neutral second, 4/5-tone, Ptolemy's second ||   || 165.00 ||
|| 11 || 11/8 ||   || undecimal semi-augmented fourth || 551.32 ||   ||
||   ||   || 12:11 || small undecimal neutral second, 3/4-tone ||   || 150.64 ||
|| 12 || 3/2 ||   || just perfect fifth || 701.955 ||   ||
||   ||   || 13:12 || large tridecimal neutral second, tridecimal 2/3 tone ||   || 138.57 ||
|| 13 || 13/8 ||   || tridecimal neutral sixth || 840.53 ||   ||
||   ||   || 14:13 || small tridecimal neutral second; lesser tridecimal 2/3 tone ||   || 128.30 ||
|| 14 || 7/4 ||   || harmonic seventh || 968.83 ||   ||
||   ||   || 15:14 || septimal minor second; major diatonic semitone ||   || 119.44 ||
|| 15 || 15/8 ||   || 5-limit major seventh; classic major seventh || 1088.27 ||   ||
||   ||   || 16:15 || 5-limit minor second; classic minor second; minor diatonic semitone ||   || 111.73 ||
|| 16 || 2/1 ||   || perfect octave || 1200.00 ||   ||

===Compositions:=== 
[[http://www.youtube.com/watch?v=FlwN7qSGz9U|Paracelsus for Diatonic Harmonic Guitar by Dante Rosati]]
[[http://www.youtube.com/watch?v=U6ElPRoIZak|No Snow for Diatonic Harmonic Guitar by Dante Rosati]]

Original HTML content:

<html><head><title>otones8-16</title></head><body>&quot;Otones 8-16&quot; refers to a scale generated by taking the 8th through 16th overtone over some fundamental. Dante Rosati calls this the &quot;Diatonic Harmonic Series Scale&quot; and Denny Genovese calls this &quot;Mode 8 of the Harmonic Series&quot;. It may be treated as octave-repeating, or not. The frequency ratio between the steps of the scale can be represented as 8:9:10:11:12:13:14:15:16. Note that 16, being a doubling of 8, is an octave above the first tone.<br />
<br />
Otones 8-16 contains eight tones in the octave and eight different step sizes. The steps get smaller as the scale ascends:<br />
<br />


<table class="wiki_table">
    <tr>
        <td>harmonic<br />
</td>
        <td>ratio from 1/1<br />
</td>
        <td>ratio in between (&quot;step&quot;)<br />
</td>
        <td>names<br />
</td>
        <td>cents value, scale member<br />
</td>
        <td>cents value, step<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td>unison, perfect prime<br />
</td>
        <td>0.00<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>9:8<br />
</td>
        <td>large whole step; Pythagorean whole step; major whole tone<br />
</td>
        <td><br />
</td>
        <td>203.91<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>9/8<br />
</td>
        <td><br />
</td>
        <td>large whole step; Pythagorean whole step; major whole tone<br />
</td>
        <td>203.91<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>10:9<br />
</td>
        <td>small whole step; 5-limit whole step; minor whole tone<br />
</td>
        <td><br />
</td>
        <td>182.40<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td>5-limit major third<br />
</td>
        <td>386.31<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>11:10<br />
</td>
        <td>large undecimal neutral second, 4/5-tone, Ptolemy's second<br />
</td>
        <td><br />
</td>
        <td>165.00<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td>undecimal semi-augmented fourth<br />
</td>
        <td>551.32<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>12:11<br />
</td>
        <td>small undecimal neutral second, 3/4-tone<br />
</td>
        <td><br />
</td>
        <td>150.64<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td>just perfect fifth<br />
</td>
        <td>701.955<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>13:12<br />
</td>
        <td>large tridecimal neutral second, tridecimal 2/3 tone<br />
</td>
        <td><br />
</td>
        <td>138.57<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>13/8<br />
</td>
        <td><br />
</td>
        <td>tridecimal neutral sixth<br />
</td>
        <td>840.53<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>14:13<br />
</td>
        <td>small tridecimal neutral second; lesser tridecimal 2/3 tone<br />
</td>
        <td><br />
</td>
        <td>128.30<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td>harmonic seventh<br />
</td>
        <td>968.83<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>15:14<br />
</td>
        <td>septimal minor second; major diatonic semitone<br />
</td>
        <td><br />
</td>
        <td>119.44<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>15/8<br />
</td>
        <td><br />
</td>
        <td>5-limit major seventh; classic major seventh<br />
</td>
        <td>1088.27<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>16:15<br />
</td>
        <td>5-limit minor second; classic minor second; minor diatonic semitone<br />
</td>
        <td><br />
</td>
        <td>111.73<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>2/1<br />
</td>
        <td><br />
</td>
        <td>perfect octave<br />
</td>
        <td>1200.00<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h3&gt; --><h3 id="toc0"><a name="x--Compositions:"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compositions:</h3>
 <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=FlwN7qSGz9U" rel="nofollow">Paracelsus for Diatonic Harmonic Guitar by Dante Rosati</a><br />
<a class="wiki_link_ext" href="http://www.youtube.com/watch?v=U6ElPRoIZak" rel="nofollow">No Snow for Diatonic Harmonic Guitar by Dante Rosati</a></body></html>