Otones8-16
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2011-10-08 23:12:13 UTC.
- The original revision id was 262909310.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
"Otones 8-16" refers to a scale generated by taking the 8th through 16th overtone over some fundamental. Dante Rosati calls this the "Diatonic Harmonic Series Scale" and Denny Genovese calls this "Mode 8 of the Harmonic Series". It may be treated as octave-repeating, or not. The frequency ratio between the steps of the scale can be represented as 8:9:10:11:12:13:14:15:16. Note that 16, being a doubling of 8, is an octave above the first tone. Otones 8-16 contains eight tones in the octave and eight different step sizes. The steps get smaller as the scale ascends: || harmonic || ratio from 1/1 || ratio in between ("step") || names || cents value, scale member || cents value, step || || 8 || 1/1 || || unison, perfect prime || 0.00 || || || || || 9:8 || large whole step; Pythagorean whole step; major whole tone || || 203.91 || || 9 || 9/8 || || large whole step; Pythagorean whole step; major whole tone || 203.91 || || || || || 10:9 || small whole step; 5-limit whole step; minor whole tone || || 182.40 || || 10 || 5/4 || || 5-limit major third || 386.31 || || || || || 11:10 || large undecimal neutral second, 4/5-tone, Ptolemy's second || || 165.00 || || 11 || 11/8 || || undecimal semi-augmented fourth || 551.32 || || || || || 12:11 || small undecimal neutral second, 3/4-tone || || 150.64 || || 12 || 3/2 || || just perfect fifth || 701.955 || || || || || 13:12 || large tridecimal neutral second, tridecimal 2/3 tone || || 138.57 || || 13 || 13/8 || || tridecimal neutral sixth || 840.53 || || || || || 14:13 || small tridecimal neutral second; lesser tridecimal 2/3 tone || || 128.30 || || 14 || 7/4 || || harmonic seventh || 968.83 || || || || || 15:14 || septimal minor second; major diatonic semitone || || 119.44 || || 15 || 15/8 || || 5-limit major seventh; classic major seventh || 1088.27 || || || || || 16:15 || 5-limit minor second; classic minor second; minor diatonic semitone || || 111.73 || || 16 || 2/1 || || perfect octave || 1200.00 || || ===Compositions:=== [[http://www.youtube.com/watch?v=FlwN7qSGz9U|Paracelsus for Diatonic Harmonic Guitar by Dante Rosati]] [[http://www.youtube.com/watch?v=U6ElPRoIZak|No Snow for Diatonic Harmonic Guitar by Dante Rosati]]
Original HTML content:
<html><head><title>otones8-16</title></head><body>"Otones 8-16" refers to a scale generated by taking the 8th through 16th overtone over some fundamental. Dante Rosati calls this the "Diatonic Harmonic Series Scale" and Denny Genovese calls this "Mode 8 of the Harmonic Series". It may be treated as octave-repeating, or not. The frequency ratio between the steps of the scale can be represented as 8:9:10:11:12:13:14:15:16. Note that 16, being a doubling of 8, is an octave above the first tone.<br /> <br /> Otones 8-16 contains eight tones in the octave and eight different step sizes. The steps get smaller as the scale ascends:<br /> <br /> <table class="wiki_table"> <tr> <td>harmonic<br /> </td> <td>ratio from 1/1<br /> </td> <td>ratio in between ("step")<br /> </td> <td>names<br /> </td> <td>cents value, scale member<br /> </td> <td>cents value, step<br /> </td> </tr> <tr> <td>8<br /> </td> <td>1/1<br /> </td> <td><br /> </td> <td>unison, perfect prime<br /> </td> <td>0.00<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>9:8<br /> </td> <td>large whole step; Pythagorean whole step; major whole tone<br /> </td> <td><br /> </td> <td>203.91<br /> </td> </tr> <tr> <td>9<br /> </td> <td>9/8<br /> </td> <td><br /> </td> <td>large whole step; Pythagorean whole step; major whole tone<br /> </td> <td>203.91<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>10:9<br /> </td> <td>small whole step; 5-limit whole step; minor whole tone<br /> </td> <td><br /> </td> <td>182.40<br /> </td> </tr> <tr> <td>10<br /> </td> <td>5/4<br /> </td> <td><br /> </td> <td>5-limit major third<br /> </td> <td>386.31<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>11:10<br /> </td> <td>large undecimal neutral second, 4/5-tone, Ptolemy's second<br /> </td> <td><br /> </td> <td>165.00<br /> </td> </tr> <tr> <td>11<br /> </td> <td>11/8<br /> </td> <td><br /> </td> <td>undecimal semi-augmented fourth<br /> </td> <td>551.32<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>12:11<br /> </td> <td>small undecimal neutral second, 3/4-tone<br /> </td> <td><br /> </td> <td>150.64<br /> </td> </tr> <tr> <td>12<br /> </td> <td>3/2<br /> </td> <td><br /> </td> <td>just perfect fifth<br /> </td> <td>701.955<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>13:12<br /> </td> <td>large tridecimal neutral second, tridecimal 2/3 tone<br /> </td> <td><br /> </td> <td>138.57<br /> </td> </tr> <tr> <td>13<br /> </td> <td>13/8<br /> </td> <td><br /> </td> <td>tridecimal neutral sixth<br /> </td> <td>840.53<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>14:13<br /> </td> <td>small tridecimal neutral second; lesser tridecimal 2/3 tone<br /> </td> <td><br /> </td> <td>128.30<br /> </td> </tr> <tr> <td>14<br /> </td> <td>7/4<br /> </td> <td><br /> </td> <td>harmonic seventh<br /> </td> <td>968.83<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>15:14<br /> </td> <td>septimal minor second; major diatonic semitone<br /> </td> <td><br /> </td> <td>119.44<br /> </td> </tr> <tr> <td>15<br /> </td> <td>15/8<br /> </td> <td><br /> </td> <td>5-limit major seventh; classic major seventh<br /> </td> <td>1088.27<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>16:15<br /> </td> <td>5-limit minor second; classic minor second; minor diatonic semitone<br /> </td> <td><br /> </td> <td>111.73<br /> </td> </tr> <tr> <td>16<br /> </td> <td>2/1<br /> </td> <td><br /> </td> <td>perfect octave<br /> </td> <td>1200.00<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h3> --><h3 id="toc0"><a name="x--Compositions:"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compositions:</h3> <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=FlwN7qSGz9U" rel="nofollow">Paracelsus for Diatonic Harmonic Guitar by Dante Rosati</a><br /> <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=U6ElPRoIZak" rel="nofollow">No Snow for Diatonic Harmonic Guitar by Dante Rosati</a></body></html>