OTC 12L 7s

From Xenharmonic Wiki
Revision as of 21:05, 31 August 2016 by Wikispaces>spt3125 (**Imported revision 590701396 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author spt3125 and made on 2016-08-31 21:05:47 UTC.
The original revision id was 590701396.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Omnitetrachordal MOS scale
[[12L 7s|12L+7s]]
19 tones (8+3+8)

[[Meantone]] MOS; [[Gallery of omnitetrachordal scales#perfect|P]]<0 (oddly, neither this scale nor its [[{$page}#dual|dual]] can be tuned with a perfect 3/2!)

P = -4.8459060415
[[Gallery of omnitetrachordal scales#Q|Q]] = 20.7295302077 (4/3 = 5L+2.5s)

L = 63.16 to 100.00 cents (97.26 cents @ Q)
s = 0.00 to 63.16 cents (4.69 cents @ Q)

9/8 = 2L+s (189.47 to 200.00 cents)
4/3 = 5L+3s (500.00 to 505.26 cents)
generator = 4/3

notable EDOs: 31, 43, 50, 55

symmetric mode: {{ LsLLsLsLLsLLsLsLLsL }}

all modes:
|| {{ LsL LsLsLLsL LsLsLLsL }} || || {{ LsLLsLsL LsLLsLsL LsL }} ||
|| {{ sLL sLsLLsLL sLsLLsLL }} || || {{ sLLsLsLL sLLsLsLL sLL }} ||
|| {{ LLs LsLLsLLs LsLLsLLs }} || || {{ LLsLsLLs LLsLsLLs LLs }} ||
|| {{ LsL sLLsLLsL sLLsLLsL }} || || {{ LsLsLLsL LsLsLLsL LsL }} ||
|| || || {{ sLsLLsLL sLsLLsLL sLL }} ||
|| || {{ LsLLsLLs LsL LsLLsLLs }} || {{ LsLLsLLs LsLLsLLs LLs }} ||
|| || {{ sLLsLLsL sLL sLLsLLsL }} || {{ sLLsLLsL sLLsLLsL LsL }} ||
|| || {{ LLsLLsLs LLs LLsLLsLs }} || ||
|| || {{ LsLLsLsL LsL LsLLsLsL }} || ||
|| || {{ sLLsLsLL sLL sLLsLsLL }} || ||
|| || {{ LLsLsLLs LLs LLsLsLLs }} || ||
|| || {{ LsLsLLsL LsL LsLsLLsL }} || ||
|| || {{ sLsLLsLL sLL sLsLLsLL }} || ||
|| {{ LsL LsLLsLLs LsLLsLLs }} || {{ LsLLsLLs LLs LsLLsLLs }} || ||
|| {{ sLL sLLsLLsL sLLsLLsL }} || {{ sLLsLLsL LsL sLLsLLsL }} || ||
|| {{ LLs LLsLLsLs LLsLLsLs }} || || ||
|| {{ LsL LsLLsLsL LsLLsLsL }} || || {{ LsLLsLLs LsLLsLLs LsL }} ||
|| {{ sLL sLLsLsLL sLLsLsLL }} || || {{ sLLsLLsL sLLsLLsL sLL }} ||
|| {{ LLs LLsLsLLs LLsLsLLs }} || || {{ LLsLLsLs LLsLLsLs LLs }} ||

[[image:19_12_07_sLLsLsLL_sLL_sLLsLsLL.png]]

===See also===
* [[Omnitetrachordality]]
* [[Gallery of omnitetrachordal scales]]

===References===
* Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages [[http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685|3685]] and [[http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987|10987]].

Original HTML content:

<html><head><title>OTC 12L 7s</title></head><body>Omnitetrachordal MOS scale<br />
<a class="wiki_link" href="/12L%207s">12L+7s</a><br />
19 tones (8+3+8)<br />
<br />
<a class="wiki_link" href="/Meantone">Meantone</a> MOS; <a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales#perfect">P</a>&lt;0 (oddly, neither this scale nor its <!-- ws:start:WikiTextVariableComponentRule:01:[[{$page}#dual|dual]] --><a class="wiki_link" href="/OTC%2012L%207s#dual">dual</a><!-- ws:end:WikiTextVariableComponentRule:01 --> can be tuned with a perfect 3/2!)<br />
<br />
P = -4.8459060415<br />
<a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales#Q">Q</a> = 20.7295302077 (4/3 = 5L+2.5s)<br />
<br />
L = 63.16 to 100.00 cents (97.26 cents @ Q)<br />
s = 0.00 to 63.16 cents (4.69 cents @ Q)<br />
<br />
9/8 = 2L+s (189.47 to 200.00 cents)<br />
4/3 = 5L+3s (500.00 to 505.26 cents)<br />
generator = 4/3<br />
<br />
notable EDOs: 31, 43, 50, 55<br />
<br />
symmetric mode: <tt> LsLLsLsLLsLLsLsLLsL </tt><br />
<br />
all modes:<br />


<table class="wiki_table">
    <tr>
        <td><tt> LsL LsLsLLsL LsLsLLsL </tt><br />
</td>
        <td><br />
</td>
        <td><tt> LsLLsLsL LsLLsLsL LsL </tt><br />
</td>
    </tr>
    <tr>
        <td><tt> sLL sLsLLsLL sLsLLsLL </tt><br />
</td>
        <td><br />
</td>
        <td><tt> sLLsLsLL sLLsLsLL sLL </tt><br />
</td>
    </tr>
    <tr>
        <td><tt> LLs LsLLsLLs LsLLsLLs </tt><br />
</td>
        <td><br />
</td>
        <td><tt> LLsLsLLs LLsLsLLs LLs </tt><br />
</td>
    </tr>
    <tr>
        <td><tt> LsL sLLsLLsL sLLsLLsL </tt><br />
</td>
        <td><br />
</td>
        <td><tt> LsLsLLsL LsLsLLsL LsL </tt><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><tt> sLsLLsLL sLsLLsLL sLL </tt><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> LsLLsLLs LsL LsLLsLLs </tt><br />
</td>
        <td><tt> LsLLsLLs LsLLsLLs LLs </tt><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> sLLsLLsL sLL sLLsLLsL </tt><br />
</td>
        <td><tt> sLLsLLsL sLLsLLsL LsL </tt><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> LLsLLsLs LLs LLsLLsLs </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> LsLLsLsL LsL LsLLsLsL </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> sLLsLsLL sLL sLLsLsLL </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> LLsLsLLs LLs LLsLsLLs </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> LsLsLLsL LsL LsLsLLsL </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><tt> sLsLLsLL sLL sLsLLsLL </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><tt> LsL LsLLsLLs LsLLsLLs </tt><br />
</td>
        <td><tt> LsLLsLLs LLs LsLLsLLs </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><tt> sLL sLLsLLsL sLLsLLsL </tt><br />
</td>
        <td><tt> sLLsLLsL LsL sLLsLLsL </tt><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><tt> LLs LLsLLsLs LLsLLsLs </tt><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><tt> LsL LsLLsLsL LsLLsLsL </tt><br />
</td>
        <td><br />
</td>
        <td><tt> LsLLsLLs LsLLsLLs LsL </tt><br />
</td>
    </tr>
    <tr>
        <td><tt> sLL sLLsLsLL sLLsLsLL </tt><br />
</td>
        <td><br />
</td>
        <td><tt> sLLsLLsL sLLsLLsL sLL </tt><br />
</td>
    </tr>
    <tr>
        <td><tt> LLs LLsLsLLs LLsLsLLs </tt><br />
</td>
        <td><br />
</td>
        <td><tt> LLsLLsLs LLsLLsLs LLs </tt><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextLocalImageRule:170:&lt;img src=&quot;/file/view/19_12_07_sLLsLsLL_sLL_sLLsLsLL.png/589273888/19_12_07_sLLsLsLL_sLL_sLLsLsLL.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/19_12_07_sLLsLsLL_sLL_sLLsLsLL.png/589273888/19_12_07_sLLsLsLL_sLL_sLLsLsLL.png" alt="19_12_07_sLLsLsLL_sLL_sLLsLsLL.png" title="19_12_07_sLLsLsLL_sLL_sLLsLsLL.png" /><!-- ws:end:WikiTextLocalImageRule:170 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc0"><a name="x--See also"></a><!-- ws:end:WikiTextHeadingRule:2 -->See also</h3>
<ul><li><a class="wiki_link" href="/Omnitetrachordality">Omnitetrachordality</a></li><li><a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales">Gallery of omnitetrachordal scales</a></li></ul><br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc1"><a name="x--References"></a><!-- ws:end:WikiTextHeadingRule:4 -->References</h3>
<ul><li>Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages <a class="wiki_link_ext" href="http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685" rel="nofollow">3685</a> and <a class="wiki_link_ext" href="http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987" rel="nofollow">10987</a>.</li></ul></body></html>