Isoharmonic chord
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2010-03-30 13:27:54 UTC.
- The original revision id was 131380685.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=isoharmonic chords= In [[JustIntonation|just intonation]], Isoharmonic chords are build by successive jumps up the [[OverToneSeries|harmonic series]] by some number of steps. Since the harmonic series is arranged such that each higher step is smaller than the one before it, all isoharmonic chords have this same shape -- with diminishing step size as one ascends. It happens that all isoharmonic chords are equal-hertz chords (but not all equal-hertz chords are isoharmonic chords). An isoharmonic "chord" may function more like a "scale" than a chord (depending on the composition of course), but I will use the word "chord" on this page for consistency. ===class i=== The simplest isoharmonic chords are built by stepping up the harmonic series by single steps (adjacent steps in the harmonic series). Take, for instance, 4:5:6:7, the harmonic seventh chord. I call these class i isoharmonic chords. There is one class i series (the harmonic series), which looks like this: || harmonic || 1 || || 2 || || 3 || || 4 || || 5 || || 6 || || 7 || || 8 || || 9 || || 10 || || 11 || || 12 || || 13 || || 14 || || 15 || || 16 || || cents diff || || 1200 || || 702 || || 498 || || 386 || || 316 || || 267 || || 231 || || 204 || || 182 || || 165 || || 151 || || 139 || || 128 || || 119 || || 112 || || Some "scales" built this way: [[otones12-24]], [[otones20-40]]... ===class ii=== The next simplest isoharmonic chords are built by stepping up the harmonic series by two (skipping every other harmonic). This gives us chords such as 3:5:7:9 (the primary tetrad in the [[BP|Bohlen-Pierce]] tuning system) and 9:11:13:15. Note that if you start on an even number, your chord is equivalent to a class i harmonic chord: 4:6:8:10 = 2:3:4:5. Thus, there is one class ii series (the series of all odd harmonics): || harmonic || 1 || || 3 || || 5 || || 7 || || 9 || || 11 || || 13 || || 15 || || 17 || || 19 || || 21 || || 23 || || 25 || || 27 || || 29 || || 31 || || cents diff || || 1904 || || 884 || || 583 || || 435 || || 347 || || 289 || || 248 || || 217 || || 193 || || 173 || || 157 || || 144 || || 133 || || 124 || || 115 || || ===class iii=== Class iii isoharmonic chords are less common and more complex sounding. They include chords such as 7:10:13:16 and 14:17:20:23. Note that if you start on a number divisible by three, you'll again get a chord reducible to class i (eg. 9:12:15 = 3:4:5). There are two series for class iii: || harmonic || 1 || || 4 || || 7 || || 10 || || 13 || || 16 || || 19 || || 22 || || 25 || || 28 || || 31 || || 34 || || 37 || || 40 || || 43 || || 46 || || cents diff || || 2400 || || 969 || || 617 || || 454 || || 359 || || 298 || || 254 || || 221 || || 196 || || 176 || || 160 || || 146 || || 135 || || 125 || || 117 || || || harmonic || 2 || || 5 || || 8 || || 11 || || 14 || || 17 || || 20 || || 23 || || 26 || || 29 || || 32 || || 35 || || 38 || || 41 || || 44 || || 47 || || cents diff || || 1586 || || 814 || || 551 || || 418 || || 336 || || 281 || || 242 || || 212 || || 189 || || 170 || || 155 || || 142 || || 132 || || 122 || || 114 || || ===class iv and beyond=== ...explore for yourself!
Original HTML content:
<html><head><title>isoharmonic chords</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="isoharmonic chords"></a><!-- ws:end:WikiTextHeadingRule:0 -->isoharmonic chords</h1> <br /> In <a class="wiki_link" href="/JustIntonation">just intonation</a>, Isoharmonic chords are build by successive jumps up the <a class="wiki_link" href="/OverToneSeries">harmonic series</a> by some number of steps. Since the harmonic series is arranged such that each higher step is smaller than the one before it, all isoharmonic chords have this same shape -- with diminishing step size as one ascends. It happens that all isoharmonic chords are equal-hertz chords (but not all equal-hertz chords are isoharmonic chords). An isoharmonic "chord" may function more like a "scale" than a chord (depending on the composition of course), but I will use the word "chord" on this page for consistency.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h3> --><h3 id="toc1"><a name="isoharmonic chords--class i"></a><!-- ws:end:WikiTextHeadingRule:2 -->class i</h3> The simplest isoharmonic chords are built by stepping up the harmonic series by single steps (adjacent steps in the harmonic series). Take, for instance, 4:5:6:7, the harmonic seventh chord. I call these class i isoharmonic chords. There is one class i series (the harmonic series), which looks like this:<br /> <br /> <table class="wiki_table"> <tr> <td>harmonic<br /> </td> <td>1<br /> </td> <td><br /> </td> <td>2<br /> </td> <td><br /> </td> <td>3<br /> </td> <td><br /> </td> <td>4<br /> </td> <td><br /> </td> <td>5<br /> </td> <td><br /> </td> <td>6<br /> </td> <td><br /> </td> <td>7<br /> </td> <td><br /> </td> <td>8<br /> </td> <td><br /> </td> <td>9<br /> </td> <td><br /> </td> <td>10<br /> </td> <td><br /> </td> <td>11<br /> </td> <td><br /> </td> <td>12<br /> </td> <td><br /> </td> <td>13<br /> </td> <td><br /> </td> <td>14<br /> </td> <td><br /> </td> <td>15<br /> </td> <td><br /> </td> <td>16<br /> </td> </tr> <tr> <td>cents diff<br /> </td> <td><br /> </td> <td>1200<br /> </td> <td><br /> </td> <td>702<br /> </td> <td><br /> </td> <td>498<br /> </td> <td><br /> </td> <td>386<br /> </td> <td><br /> </td> <td>316<br /> </td> <td><br /> </td> <td>267<br /> </td> <td><br /> </td> <td>231<br /> </td> <td><br /> </td> <td>204<br /> </td> <td><br /> </td> <td>182<br /> </td> <td><br /> </td> <td>165<br /> </td> <td><br /> </td> <td>151<br /> </td> <td><br /> </td> <td>139<br /> </td> <td><br /> </td> <td>128<br /> </td> <td><br /> </td> <td>119<br /> </td> <td><br /> </td> <td>112<br /> </td> <td><br /> </td> </tr> </table> <br /> Some "scales" built this way: <a class="wiki_link" href="/otones12-24">otones12-24</a>, <a class="wiki_link" href="/otones20-40">otones20-40</a>...<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h3> --><h3 id="toc2"><a name="isoharmonic chords--class ii"></a><!-- ws:end:WikiTextHeadingRule:4 -->class ii</h3> The next simplest isoharmonic chords are built by stepping up the harmonic series by two (skipping every other harmonic). This gives us chords such as 3:5:7:9 (the primary tetrad in the <a class="wiki_link" href="/BP">Bohlen-Pierce</a> tuning system) and 9:11:13:15. Note that if you start on an even number, your chord is equivalent to a class i harmonic chord: 4:6:8:10 = 2:3:4:5. Thus, there is one class ii series (the series of all odd harmonics):<br /> <br /> <table class="wiki_table"> <tr> <td>harmonic<br /> </td> <td>1<br /> </td> <td><br /> </td> <td>3<br /> </td> <td><br /> </td> <td>5<br /> </td> <td><br /> </td> <td>7<br /> </td> <td><br /> </td> <td>9<br /> </td> <td><br /> </td> <td>11<br /> </td> <td><br /> </td> <td>13<br /> </td> <td><br /> </td> <td>15<br /> </td> <td><br /> </td> <td>17<br /> </td> <td><br /> </td> <td>19<br /> </td> <td><br /> </td> <td>21<br /> </td> <td><br /> </td> <td>23<br /> </td> <td><br /> </td> <td>25<br /> </td> <td><br /> </td> <td>27<br /> </td> <td><br /> </td> <td>29<br /> </td> <td><br /> </td> <td>31<br /> </td> </tr> <tr> <td>cents diff<br /> </td> <td><br /> </td> <td>1904<br /> </td> <td><br /> </td> <td>884<br /> </td> <td><br /> </td> <td>583<br /> </td> <td><br /> </td> <td>435<br /> </td> <td><br /> </td> <td>347<br /> </td> <td><br /> </td> <td>289<br /> </td> <td><br /> </td> <td>248<br /> </td> <td><br /> </td> <td>217<br /> </td> <td><br /> </td> <td>193<br /> </td> <td><br /> </td> <td>173<br /> </td> <td><br /> </td> <td>157<br /> </td> <td><br /> </td> <td>144<br /> </td> <td><br /> </td> <td>133<br /> </td> <td><br /> </td> <td>124<br /> </td> <td><br /> </td> <td>115<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h3> --><h3 id="toc3"><a name="isoharmonic chords--class iii"></a><!-- ws:end:WikiTextHeadingRule:6 -->class iii</h3> Class iii isoharmonic chords are less common and more complex sounding. They include chords such as 7:10:13:16 and 14:17:20:23. Note that if you start on a number divisible by three, you'll again get a chord reducible to class i (eg. 9:12:15 = 3:4:5). There are two series for class iii:<br /> <br /> <table class="wiki_table"> <tr> <td>harmonic<br /> </td> <td>1<br /> </td> <td><br /> </td> <td>4<br /> </td> <td><br /> </td> <td>7<br /> </td> <td><br /> </td> <td>10<br /> </td> <td><br /> </td> <td>13<br /> </td> <td><br /> </td> <td>16<br /> </td> <td><br /> </td> <td>19<br /> </td> <td><br /> </td> <td>22<br /> </td> <td><br /> </td> <td>25<br /> </td> <td><br /> </td> <td>28<br /> </td> <td><br /> </td> <td>31<br /> </td> <td><br /> </td> <td>34<br /> </td> <td><br /> </td> <td>37<br /> </td> <td><br /> </td> <td>40<br /> </td> <td><br /> </td> <td>43<br /> </td> <td><br /> </td> <td>46<br /> </td> </tr> <tr> <td>cents diff<br /> </td> <td><br /> </td> <td>2400<br /> </td> <td><br /> </td> <td>969<br /> </td> <td><br /> </td> <td>617<br /> </td> <td><br /> </td> <td>454<br /> </td> <td><br /> </td> <td>359<br /> </td> <td><br /> </td> <td>298<br /> </td> <td><br /> </td> <td>254<br /> </td> <td><br /> </td> <td>221<br /> </td> <td><br /> </td> <td>196<br /> </td> <td><br /> </td> <td>176<br /> </td> <td><br /> </td> <td>160<br /> </td> <td><br /> </td> <td>146<br /> </td> <td><br /> </td> <td>135<br /> </td> <td><br /> </td> <td>125<br /> </td> <td><br /> </td> <td>117<br /> </td> <td><br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>harmonic<br /> </td> <td>2<br /> </td> <td><br /> </td> <td>5<br /> </td> <td><br /> </td> <td>8<br /> </td> <td><br /> </td> <td>11<br /> </td> <td><br /> </td> <td>14<br /> </td> <td><br /> </td> <td>17<br /> </td> <td><br /> </td> <td>20<br /> </td> <td><br /> </td> <td>23<br /> </td> <td><br /> </td> <td>26<br /> </td> <td><br /> </td> <td>29<br /> </td> <td><br /> </td> <td>32<br /> </td> <td><br /> </td> <td>35<br /> </td> <td><br /> </td> <td>38<br /> </td> <td><br /> </td> <td>41<br /> </td> <td><br /> </td> <td>44<br /> </td> <td><br /> </td> <td>47<br /> </td> </tr> <tr> <td>cents diff<br /> </td> <td><br /> </td> <td>1586<br /> </td> <td><br /> </td> <td>814<br /> </td> <td><br /> </td> <td>551<br /> </td> <td><br /> </td> <td>418<br /> </td> <td><br /> </td> <td>336<br /> </td> <td><br /> </td> <td>281<br /> </td> <td><br /> </td> <td>242<br /> </td> <td><br /> </td> <td>212<br /> </td> <td><br /> </td> <td>189<br /> </td> <td><br /> </td> <td>170<br /> </td> <td><br /> </td> <td>155<br /> </td> <td><br /> </td> <td>142<br /> </td> <td><br /> </td> <td>132<br /> </td> <td><br /> </td> <td>122<br /> </td> <td><br /> </td> <td>114<br /> </td> <td><br /> </td> </tr> </table> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h3> --><h3 id="toc4"><a name="isoharmonic chords--class iv and beyond"></a><!-- ws:end:WikiTextHeadingRule:8 -->class iv and beyond</h3> ...explore for yourself!</body></html>