Chords of meanpop

From Xenharmonic Wiki
Revision as of 11:12, 30 December 2011 by Wikispaces>genewardsmith (**Imported revision 288830279 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-30 11:12:37 UTC.
The original revision id was 288830279.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.

Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80  and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.

Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.

=Triads=
|| Number || Chord || Transversal || Type ||

|| 1 || 0-1-2 || 1-3/2-9/8 || ambitonal ||
|| 2 || 0-1-3 || 1-3/2-5/3 || otonal ||
|| 3 || 0-2-3 || 1-10/9-5/3 || utonal ||
|| 4 || 0-1-4 || 1-3/2-5/4 || otonal ||
|| 5 || 0-2-4 || 1-9/8-5/4 || otonal ||
|| 6 || 0-3-4 || 1-5/3-5/4 || utonal ||
|| 7 || 0-2-6 || 1-9/8-7/5 || marvel ||
|| 8 || 0-3-6 || 1-5/3-7/5 || starling ||
|| 9 || 0-4-6 || 1-5/4-7/5 || marvel ||
|| 10 || 0-2-8 || 1-10/9-14/9 || otonal ||
|| 11 || 0-4-8 || 1-5/4-14/9 || marvel ||
|| 12 || 0-6-8 || 1-7/5-14/9 || utonal ||
|| 13 || 0-1-9 || 1-3/2-7/6 || otonal ||
|| 14 || 0-3-9 || 1-5/3-7/6 || otonal ||
|| 15 || 0-6-9 || 1-7/5-7/6 || utonal ||
|| 16 || 0-8-9 || 1-14/9-7/6 || utonal ||
|| 17 || 0-1-10 || 1-3/2-7/4 || otonal ||
|| 18 || 0-2-10 || 1-9/8-7/4 || otonal ||
|| 19 || 0-4-10 || 1-5/4-7/4 || otonal ||
|| 20 || 0-6-10 || 1-7/5-7/4 || utonal ||
|| 21 || 0-8-10 || 1-14/9-7/4 || utonal ||
|| 22 || 0-9-10 || 1-7/6-7/4 || utonal ||
|| 23 || 0-3-13 || 1-5/3-16/11 || keenanismic ||
|| 24 || 0-4-13 || 1-5/4-16/11 || keenanismic ||
|| 25 || 0-9-13 || 1-7/6-16/11 || keenanismic ||
|| 26 || 0-10-13 || 1-7/4-16/11 || keenanismic ||
|| 27 || 0-1-14 || 1-3/2-12/11 || utonal ||
|| 28 || 0-4-14 || 1-5/4-12/11 || keenanismic ||
|| 29 || 0-6-14 || 1-7/5-12/11 || swetismic ||
|| 30 || 0-8-14 || 1-14/9-12/11 || swetismic ||
|| 31 || 0-10-14 || 1-7/4-12/11 || keenanismic ||
|| 32 || 0-13-14 || 1-16/11-12/11 || otonal ||
|| 33 || 0-1-15 || 1-3/2-18/11 || utonal ||
|| 34 || 0-2-15 || 1-9/8-18/11 || utonal ||
|| 35 || 0-6-15 || 1-7/5-18/11 || swetismic ||
|| 36 || 0-9-15 || 1-7/6-18/11 || swetismic ||
|| 37 || 0-13-15 || 1-16/11-18/11 || otonal ||
|| 38 || 0-14-15 || 1-12/11-18/11 || otonal ||
|| 39 || 0-2-17 || 1-10/9-20/11 || utonal ||
|| 40 || 0-3-17 || 1-5/3-20/11 || utonal ||
|| 41 || 0-4-17 || 1-5/4-20/11 || utonal ||
|| 42 || 0-8-17 || 1-14/9-20/11 || swetismic ||
|| 43 || 0-9-17 || 1-7/6-20/11 || swetismic ||
|| 44 || 0-13-17 || 1-16/11-20/11 || otonal ||
|| 45 || 0-14-17 || 1-12/11-20/11 || otonal ||
|| 46 || 0-15-17 || 1-18/11-20/11 || otonal ||
|| 47 || 0-6-23 || 1-7/5-14/11 || utonal ||
|| 48 || 0-8-23 || 1-14/9-14/11 || utonal ||
|| 49 || 0-9-23 || 1-7/6-14/11 || utonal ||
|| 50 || 0-10-23 || 1-7/4-14/11 || utonal ||
|| 51 || 0-13-23 || 1-16/11-14/11 || otonal ||
|| 52 || 0-14-23 || 1-12/11-14/11 || otonal ||
|| 53 || 0-15-23 || 1-18/11-14/11 || otonal ||
|| 54 || 0-17-23 || 1-20/11-14/11 || otonal ||

=Tetrads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3 || 1-3/2-9/8-5/3 || didymic ||
|| 2 || 0-1-2-4 || 1-3/2-9/8-5/4 || otonal ||
|| 3 || 0-1-3-4 || 1-3/2-5/3-5/4 || ambitonal ||
|| 4 || 0-2-3-4 || 1-10/9-5/3-5/4 || utonal ||
|| 5 || 0-2-3-6 || 1-9/8-5/3-7/5 || erato ||
|| 6 || 0-2-4-6 || 1-9/8-5/4-7/5 || erato ||
|| 7 || 0-3-4-6 || 1-5/3-5/4-7/5 || erato ||
|| 8 || 0-2-4-8 || 1-9/8-5/4-14/9 || erato ||
|| 9 || 0-2-6-8 || 1-9/8-7/5-14/9 || erato ||
|| 10 || 0-4-6-8 || 1-5/4-7/5-14/9 || erato ||
|| 11 || 0-1-3-9 || 1-3/2-5/3-7/6 || otonal ||
|| 12 || 0-3-6-9 || 1-5/3-7/5-7/6 || starling ||
|| 13 || 0-6-8-9 || 1-7/5-14/9-7/6 || utonal ||
|| 14 || 0-1-2-10 || 1-3/2-9/8-7/4 || otonal ||
|| 15 || 0-1-4-10 || 1-3/2-5/4-7/4 || otonal ||
|| 16 || 0-2-4-10 || 1-9/8-5/4-7/4 || otonal ||
|| 17 || 0-2-6-10 || 1-9/8-7/5-7/4 || marvel ||
|| 18 || 0-4-6-10 || 1-5/4-7/5-7/4 || marvel ||
|| 19 || 0-2-8-10 || 1-9/8-14/9-7/4 || didymic ||
|| 20 || 0-4-8-10 || 1-5/4-14/9-7/4 || marvel ||
|| 21 || 0-6-8-10 || 1-7/5-14/9-7/4 || utonal ||
|| 22 || 0-1-9-10 || 1-3/2-7/6-7/4 || ambitonal ||
|| 23 || 0-6-9-10 || 1-7/5-7/6-7/4 || utonal ||
|| 24 || 0-8-9-10 || 1-14/9-7/6-7/4 || utonal ||
|| 25 || 0-3-4-13 || 1-5/3-5/4-16/11 || keenanismic ||
|| 26 || 0-3-9-13 || 1-5/3-7/6-16/11 || keenanismic ||
|| 27 || 0-4-10-13 || 1-5/4-7/4-16/11 || keenanismic ||
|| 28 || 0-9-10-13 || 1-7/6-7/4-16/11 || keenanismic ||
|| 29 || 0-1-4-14 || 1-3/2-5/4-12/11 || keenanismic ||
|| 30 || 0-4-6-14 || 1-5/4-7/5-12/11 || unimarv ||
|| 31 || 0-4-8-14 || 1-5/4-14/9-12/11 || unimarv ||
|| 32 || 0-6-8-14 || 1-7/5-14/9-12/11 || terpsichore ||
|| 33 || 0-1-10-14 || 1-3/2-7/4-12/11 || keenanismic ||
|| 34 || 0-4-10-14 || 1-5/4-7/4-12/11 || keenanismic ||
|| 35 || 0-6-10-14 || 1-7/5-7/4-12/11 || unimarv ||
|| 36 || 0-8-10-14 || 1-14/9-7/4-12/11 || unimarv ||
|| 37 || 0-4-13-14 || 1-5/4-16/11-12/11 || keenanismic ||
|| 38 || 0-10-13-14 || 1-7/4-16/11-12/11 || keenanismic ||
|| 39 || 0-1-2-15 || 1-3/2-9/8-18/11 || utonal ||
|| 40 || 0-2-6-15 || 1-9/8-7/5-18/11 || unimarv ||
|| 41 || 0-1-9-15 || 1-3/2-7/6-18/11 || swetismic ||
|| 42 || 0-6-9-15 || 1-7/5-7/6-18/11 || swetismic ||
|| 43 || 0-9-13-15 || 1-7/6-16/11-18/11 || unimarv ||
|| 44 || 0-1-14-15 || 1-3/2-12/11-18/11 || ambitonal ||
|| 45 || 0-6-14-15 || 1-7/5-12/11-18/11 || swetismic ||
|| 46 || 0-13-14-15 || 1-16/11-12/11-18/11 || otonal ||
|| 47 || 0-2-3-17 || 1-10/9-5/3-20/11 || utonal ||
|| 48 || 0-2-4-17 || 1-10/9-5/4-20/11 || utonal ||
|| 49 || 0-3-4-17 || 1-5/3-5/4-20/11 || utonal ||
|| 50 || 0-2-8-17 || 1-9/8-14/9-20/11 || terpsichore ||
|| 51 || 0-4-8-17 || 1-5/4-14/9-20/11 || unimarv ||
|| 52 || 0-3-9-17 || 1-5/3-7/6-20/11 || swetismic ||
|| 53 || 0-8-9-17 || 1-14/9-7/6-20/11 || swetismic ||
|| 54 || 0-3-13-17 || 1-5/3-16/11-20/11 || keenanismic ||
|| 55 || 0-4-13-17 || 1-5/4-16/11-20/11 || keenanismic ||
|| 56 || 0-9-13-17 || 1-7/6-16/11-20/11 || unimarv ||
|| 57 || 0-4-14-17 || 1-5/4-12/11-20/11 || keenanismic ||
|| 58 || 0-8-14-17 || 1-14/9-12/11-20/11 || swetismic ||
|| 59 || 0-13-14-17 || 1-16/11-12/11-20/11 || otonal ||
|| 60 || 0-2-15-17 || 1-9/8-18/11-20/11 || didymic ||
|| 61 || 0-9-15-17 || 1-7/6-18/11-20/11 || terpsichore ||
|| 62 || 0-13-15-17 || 1-16/11-18/11-20/11 || otonal ||
|| 63 || 0-14-15-17 || 1-12/11-18/11-20/11 || otonal ||
|| 64 || 0-6-8-23 || 1-7/5-14/9-14/11 || utonal ||
|| 65 || 0-6-9-23 || 1-7/5-7/6-14/11 || utonal ||
|| 66 || 0-8-9-23 || 1-14/9-7/6-14/11 || utonal ||
|| 67 || 0-6-10-23 || 1-7/5-7/4-14/11 || utonal ||
|| 68 || 0-8-10-23 || 1-14/9-7/4-14/11 || utonal ||
|| 69 || 0-9-10-23 || 1-7/6-7/4-14/11 || utonal ||
|| 70 || 0-9-13-23 || 1-7/6-16/11-14/11 || keenanismic ||
|| 71 || 0-10-13-23 || 1-7/4-16/11-14/11 || keenanismic ||
|| 72 || 0-6-14-23 || 1-7/5-12/11-14/11 || swetismic ||
|| 73 || 0-8-14-23 || 1-14/9-12/11-14/11 || swetismic ||
|| 74 || 0-10-14-23 || 1-7/4-12/11-14/11 || keenanismic ||
|| 75 || 0-13-14-23 || 1-16/11-12/11-14/11 || otonal ||
|| 76 || 0-6-15-23 || 1-7/5-18/11-14/11 || swetismic ||
|| 77 || 0-9-15-23 || 1-7/6-18/11-14/11 || swetismic ||
|| 78 || 0-13-15-23 || 1-16/11-18/11-14/11 || otonal ||
|| 79 || 0-14-15-23 || 1-12/11-18/11-14/11 || otonal ||
|| 80 || 0-8-17-23 || 1-14/9-20/11-14/11 || swetismic ||
|| 81 || 0-9-17-23 || 1-7/6-20/11-14/11 || swetismic ||
|| 82 || 0-13-17-23 || 1-16/11-20/11-14/11 || otonal ||
|| 83 || 0-14-17-23 || 1-12/11-20/11-14/11 || otonal ||
|| 84 || 0-15-17-23 || 1-18/11-20/11-14/11 || otonal ||

=Pentads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3-4 || 1-3/2-9/8-5/3-5/4 || didymic ||
|| 2 || 0-2-3-4-6 || 1-9/8-5/3-5/4-7/5 || erato ||
|| 3 || 0-2-4-6-8 || 1-9/8-5/4-7/5-14/9 || erato ||
|| 4 || 0-1-2-4-10 || 1-3/2-9/8-5/4-7/4 || otonal ||
|| 5 || 0-2-4-6-10 || 1-9/8-5/4-7/5-7/4 || erato ||
|| 6 || 0-2-4-8-10 || 1-9/8-5/4-14/9-7/4 || erato ||
|| 7 || 0-2-6-8-10 || 1-9/8-7/5-14/9-7/4 || erato ||
|| 8 || 0-4-6-8-10 || 1-5/4-7/5-14/9-7/4 || erato ||
|| 9 || 0-6-8-9-10 || 1-7/5-14/9-7/6-7/4 || utonal ||
|| 10 || 0-4-6-8-14 || 1-5/4-7/5-14/9-12/11 || meanpop ||
|| 11 || 0-1-4-10-14 || 1-3/2-5/4-7/4-12/11 || keenanismic ||
|| 12 || 0-4-6-10-14 || 1-5/4-7/5-7/4-12/11 || unimarv ||
|| 13 || 0-4-8-10-14 || 1-5/4-14/9-7/4-12/11 || unimarv ||
|| 14 || 0-6-8-10-14 || 1-7/5-14/9-7/4-12/11 || meanpop ||
|| 15 || 0-4-10-13-14 || 1-5/4-7/4-16/11-12/11 || keenanismic ||
|| 16 || 0-2-3-4-17 || 1-10/9-5/3-5/4-20/11 || utonal ||
|| 17 || 0-2-4-8-17 || 1-9/8-5/4-14/9-20/11 || meanpop ||
|| 18 || 0-3-4-13-17 || 1-5/3-5/4-16/11-20/11 || keenanismic ||
|| 19 || 0-3-9-13-17 || 1-5/3-7/6-16/11-20/11 || unimarv ||
|| 20 || 0-4-8-14-17 || 1-5/4-14/9-12/11-20/11 || unimarv ||
|| 21 || 0-4-13-14-17 || 1-5/4-16/11-12/11-20/11 || keenanismic ||
|| 22 || 0-9-13-15-17 || 1-7/6-16/11-18/11-20/11 || meanpop ||
|| 23 || 0-13-14-15-17 || 1-16/11-12/11-18/11-20/11 || otonal ||
|| 24 || 0-6-8-9-23 || 1-7/5-14/9-7/6-14/11 || utonal ||
|| 25 || 0-6-8-10-23 || 1-7/5-14/9-7/4-14/11 || utonal ||
|| 26 || 0-6-9-10-23 || 1-7/5-7/6-7/4-14/11 || utonal ||
|| 27 || 0-8-9-10-23 || 1-14/9-7/6-7/4-14/11 || utonal ||
|| 28 || 0-9-10-13-23 || 1-7/6-7/4-16/11-14/11 || keenanismic ||
|| 29 || 0-6-8-14-23 || 1-7/5-14/9-12/11-14/11 || terpsichore ||
|| 30 || 0-6-10-14-23 || 1-7/5-7/4-12/11-14/11 || unimarv ||
|| 31 || 0-8-10-14-23 || 1-14/9-7/4-12/11-14/11 || unimarv ||
|| 32 || 0-10-13-14-23 || 1-7/4-16/11-12/11-14/11 || keenanismic ||
|| 33 || 0-6-9-15-23 || 1-7/5-7/6-18/11-14/11 || swetismic ||
|| 34 || 0-9-13-15-23 || 1-7/6-16/11-18/11-14/11 || unimarv ||
|| 35 || 0-6-14-15-23 || 1-7/5-12/11-18/11-14/11 || swetismic ||
|| 36 || 0-13-14-15-23 || 1-16/11-12/11-18/11-14/11 || otonal ||
|| 37 || 0-8-9-17-23 || 1-14/9-7/6-20/11-14/11 || swetismic ||
|| 38 || 0-9-13-17-23 || 1-7/6-16/11-20/11-14/11 || unimarv ||
|| 39 || 0-8-14-17-23 || 1-14/9-12/11-20/11-14/11 || swetismic ||
|| 40 || 0-13-14-17-23 || 1-16/11-12/11-20/11-14/11 || otonal ||
|| 41 || 0-9-15-17-23 || 1-7/6-18/11-20/11-14/11 || terpsichore ||
|| 42 || 0-13-15-17-23 || 1-16/11-18/11-20/11-14/11 || otonal ||
|| 43 || 0-14-15-17-23 || 1-12/11-18/11-20/11-14/11 || otonal ||

=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4-6-8-10 || 1-9/8-5/4-7/5-14/9-7/4 || erato ||
|| 2 || 0-4-6-8-10-14 || 1-5/4-7/5-14/9-7/4-12/11 || meanpop ||
|| 3 || 0-6-8-9-10-23 || 1-7/5-14/9-7/6-7/4-14/11 || utonal ||
|| 4 || 0-6-8-10-14-23 || 1-7/5-14/9-7/4-12/11-14/11 || meanpop ||
|| 5 || 0-9-13-15-17-23 || 1-7/6-16/11-18/11-20/11-14/11 || meanpop ||
|| 6 || 0-13-14-15-17-23 || 1-16/11-12/11-18/11-20/11-14/11 || otonal ||

Original HTML content:

<html><head><title>Chords of meanpop</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.<br />
<br />
Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80  and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.<br />
<br />
Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>1<br />
</td>
        <td>0-1-2<br />
</td>
        <td>1-3/2-9/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-3<br />
</td>
        <td>1-3/2-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-2-3<br />
</td>
        <td>1-10/9-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-1-4<br />
</td>
        <td>1-3/2-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-4<br />
</td>
        <td>1-9/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-4<br />
</td>
        <td>1-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-2-6<br />
</td>
        <td>1-9/8-7/5<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-3-6<br />
</td>
        <td>1-5/3-7/5<br />
</td>
        <td>starling<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-4-6<br />
</td>
        <td>1-5/4-7/5<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-2-8<br />
</td>
        <td>1-10/9-14/9<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-4-8<br />
</td>
        <td>1-5/4-14/9<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-6-8<br />
</td>
        <td>1-7/5-14/9<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-1-9<br />
</td>
        <td>1-3/2-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-3-9<br />
</td>
        <td>1-5/3-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-6-9<br />
</td>
        <td>1-7/5-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-8-9<br />
</td>
        <td>1-14/9-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-1-10<br />
</td>
        <td>1-3/2-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-2-10<br />
</td>
        <td>1-9/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-4-10<br />
</td>
        <td>1-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-6-10<br />
</td>
        <td>1-7/5-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-8-10<br />
</td>
        <td>1-14/9-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-9-10<br />
</td>
        <td>1-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-3-13<br />
</td>
        <td>1-5/3-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-4-13<br />
</td>
        <td>1-5/4-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-9-13<br />
</td>
        <td>1-7/6-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-10-13<br />
</td>
        <td>1-7/4-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-1-14<br />
</td>
        <td>1-3/2-12/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-4-14<br />
</td>
        <td>1-5/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-6-14<br />
</td>
        <td>1-7/5-12/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-8-14<br />
</td>
        <td>1-14/9-12/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-10-14<br />
</td>
        <td>1-7/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-13-14<br />
</td>
        <td>1-16/11-12/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-1-15<br />
</td>
        <td>1-3/2-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-2-15<br />
</td>
        <td>1-9/8-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-6-15<br />
</td>
        <td>1-7/5-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-9-15<br />
</td>
        <td>1-7/6-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-13-15<br />
</td>
        <td>1-16/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-14-15<br />
</td>
        <td>1-12/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-2-17<br />
</td>
        <td>1-10/9-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-3-17<br />
</td>
        <td>1-5/3-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-4-17<br />
</td>
        <td>1-5/4-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-8-17<br />
</td>
        <td>1-14/9-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-9-17<br />
</td>
        <td>1-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-13-17<br />
</td>
        <td>1-16/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-14-17<br />
</td>
        <td>1-12/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-15-17<br />
</td>
        <td>1-18/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-6-23<br />
</td>
        <td>1-7/5-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-8-23<br />
</td>
        <td>1-14/9-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-9-23<br />
</td>
        <td>1-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-10-23<br />
</td>
        <td>1-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-13-23<br />
</td>
        <td>1-16/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-14-23<br />
</td>
        <td>1-12/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-15-23<br />
</td>
        <td>1-18/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-17-23<br />
</td>
        <td>1-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2-3<br />
</td>
        <td>1-3/2-9/8-5/3<br />
</td>
        <td>didymic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-2-4<br />
</td>
        <td>1-3/2-9/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-3-4<br />
</td>
        <td>1-3/2-5/3-5/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-3-4<br />
</td>
        <td>1-10/9-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-3-6<br />
</td>
        <td>1-9/8-5/3-7/5<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-2-4-6<br />
</td>
        <td>1-9/8-5/4-7/5<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-3-4-6<br />
</td>
        <td>1-5/3-5/4-7/5<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-2-4-8<br />
</td>
        <td>1-9/8-5/4-14/9<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-2-6-8<br />
</td>
        <td>1-9/8-7/5-14/9<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-4-6-8<br />
</td>
        <td>1-5/4-7/5-14/9<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-1-3-9<br />
</td>
        <td>1-3/2-5/3-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-3-6-9<br />
</td>
        <td>1-5/3-7/5-7/6<br />
</td>
        <td>starling<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-6-8-9<br />
</td>
        <td>1-7/5-14/9-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-1-2-10<br />
</td>
        <td>1-3/2-9/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-1-4-10<br />
</td>
        <td>1-3/2-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-2-4-10<br />
</td>
        <td>1-9/8-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-2-6-10<br />
</td>
        <td>1-9/8-7/5-7/4<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-4-6-10<br />
</td>
        <td>1-5/4-7/5-7/4<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-2-8-10<br />
</td>
        <td>1-9/8-14/9-7/4<br />
</td>
        <td>didymic<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-4-8-10<br />
</td>
        <td>1-5/4-14/9-7/4<br />
</td>
        <td>marvel<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-6-8-10<br />
</td>
        <td>1-7/5-14/9-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-1-9-10<br />
</td>
        <td>1-3/2-7/6-7/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-6-9-10<br />
</td>
        <td>1-7/5-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-8-9-10<br />
</td>
        <td>1-14/9-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-3-4-13<br />
</td>
        <td>1-5/3-5/4-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-3-9-13<br />
</td>
        <td>1-5/3-7/6-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-4-10-13<br />
</td>
        <td>1-5/4-7/4-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-9-10-13<br />
</td>
        <td>1-7/6-7/4-16/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-1-4-14<br />
</td>
        <td>1-3/2-5/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-4-6-14<br />
</td>
        <td>1-5/4-7/5-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-4-8-14<br />
</td>
        <td>1-5/4-14/9-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-6-8-14<br />
</td>
        <td>1-7/5-14/9-12/11<br />
</td>
        <td>terpsichore<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-1-10-14<br />
</td>
        <td>1-3/2-7/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-4-10-14<br />
</td>
        <td>1-5/4-7/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-6-10-14<br />
</td>
        <td>1-7/5-7/4-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-8-10-14<br />
</td>
        <td>1-14/9-7/4-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-4-13-14<br />
</td>
        <td>1-5/4-16/11-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-10-13-14<br />
</td>
        <td>1-7/4-16/11-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-1-2-15<br />
</td>
        <td>1-3/2-9/8-18/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-2-6-15<br />
</td>
        <td>1-9/8-7/5-18/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-1-9-15<br />
</td>
        <td>1-3/2-7/6-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-6-9-15<br />
</td>
        <td>1-7/5-7/6-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-9-13-15<br />
</td>
        <td>1-7/6-16/11-18/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-1-14-15<br />
</td>
        <td>1-3/2-12/11-18/11<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-6-14-15<br />
</td>
        <td>1-7/5-12/11-18/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-13-14-15<br />
</td>
        <td>1-16/11-12/11-18/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-2-3-17<br />
</td>
        <td>1-10/9-5/3-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-2-4-17<br />
</td>
        <td>1-10/9-5/4-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-3-4-17<br />
</td>
        <td>1-5/3-5/4-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-2-8-17<br />
</td>
        <td>1-9/8-14/9-20/11<br />
</td>
        <td>terpsichore<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-4-8-17<br />
</td>
        <td>1-5/4-14/9-20/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-3-9-17<br />
</td>
        <td>1-5/3-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-8-9-17<br />
</td>
        <td>1-14/9-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-3-13-17<br />
</td>
        <td>1-5/3-16/11-20/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-4-13-17<br />
</td>
        <td>1-5/4-16/11-20/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-9-13-17<br />
</td>
        <td>1-7/6-16/11-20/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-4-14-17<br />
</td>
        <td>1-5/4-12/11-20/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-8-14-17<br />
</td>
        <td>1-14/9-12/11-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-13-14-17<br />
</td>
        <td>1-16/11-12/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-2-15-17<br />
</td>
        <td>1-9/8-18/11-20/11<br />
</td>
        <td>didymic<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-9-15-17<br />
</td>
        <td>1-7/6-18/11-20/11<br />
</td>
        <td>terpsichore<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-13-15-17<br />
</td>
        <td>1-16/11-18/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-14-15-17<br />
</td>
        <td>1-12/11-18/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>0-6-8-23<br />
</td>
        <td>1-7/5-14/9-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>0-6-9-23<br />
</td>
        <td>1-7/5-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>0-8-9-23<br />
</td>
        <td>1-14/9-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>67<br />
</td>
        <td>0-6-10-23<br />
</td>
        <td>1-7/5-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>68<br />
</td>
        <td>0-8-10-23<br />
</td>
        <td>1-14/9-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>69<br />
</td>
        <td>0-9-10-23<br />
</td>
        <td>1-7/6-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>70<br />
</td>
        <td>0-9-13-23<br />
</td>
        <td>1-7/6-16/11-14/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>71<br />
</td>
        <td>0-10-13-23<br />
</td>
        <td>1-7/4-16/11-14/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>72<br />
</td>
        <td>0-6-14-23<br />
</td>
        <td>1-7/5-12/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>73<br />
</td>
        <td>0-8-14-23<br />
</td>
        <td>1-14/9-12/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>74<br />
</td>
        <td>0-10-14-23<br />
</td>
        <td>1-7/4-12/11-14/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>75<br />
</td>
        <td>0-13-14-23<br />
</td>
        <td>1-16/11-12/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>76<br />
</td>
        <td>0-6-15-23<br />
</td>
        <td>1-7/5-18/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>77<br />
</td>
        <td>0-9-15-23<br />
</td>
        <td>1-7/6-18/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>78<br />
</td>
        <td>0-13-15-23<br />
</td>
        <td>1-16/11-18/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>79<br />
</td>
        <td>0-14-15-23<br />
</td>
        <td>1-12/11-18/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>80<br />
</td>
        <td>0-8-17-23<br />
</td>
        <td>1-14/9-20/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>81<br />
</td>
        <td>0-9-17-23<br />
</td>
        <td>1-7/6-20/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>82<br />
</td>
        <td>0-13-17-23<br />
</td>
        <td>1-16/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>83<br />
</td>
        <td>0-14-17-23<br />
</td>
        <td>1-12/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>84<br />
</td>
        <td>0-15-17-23<br />
</td>
        <td>1-18/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2-3-4<br />
</td>
        <td>1-3/2-9/8-5/3-5/4<br />
</td>
        <td>didymic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-2-3-4-6<br />
</td>
        <td>1-9/8-5/3-5/4-7/5<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-2-4-6-8<br />
</td>
        <td>1-9/8-5/4-7/5-14/9<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-1-2-4-10<br />
</td>
        <td>1-3/2-9/8-5/4-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-4-6-10<br />
</td>
        <td>1-9/8-5/4-7/5-7/4<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-2-4-8-10<br />
</td>
        <td>1-9/8-5/4-14/9-7/4<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-2-6-8-10<br />
</td>
        <td>1-9/8-7/5-14/9-7/4<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-4-6-8-10<br />
</td>
        <td>1-5/4-7/5-14/9-7/4<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-6-8-9-10<br />
</td>
        <td>1-7/5-14/9-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-4-6-8-14<br />
</td>
        <td>1-5/4-7/5-14/9-12/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-1-4-10-14<br />
</td>
        <td>1-3/2-5/4-7/4-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-4-6-10-14<br />
</td>
        <td>1-5/4-7/5-7/4-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-8-10-14<br />
</td>
        <td>1-5/4-14/9-7/4-12/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-6-8-10-14<br />
</td>
        <td>1-7/5-14/9-7/4-12/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-4-10-13-14<br />
</td>
        <td>1-5/4-7/4-16/11-12/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-2-3-4-17<br />
</td>
        <td>1-10/9-5/3-5/4-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-2-4-8-17<br />
</td>
        <td>1-9/8-5/4-14/9-20/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-3-4-13-17<br />
</td>
        <td>1-5/3-5/4-16/11-20/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-3-9-13-17<br />
</td>
        <td>1-5/3-7/6-16/11-20/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-4-8-14-17<br />
</td>
        <td>1-5/4-14/9-12/11-20/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-4-13-14-17<br />
</td>
        <td>1-5/4-16/11-12/11-20/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-9-13-15-17<br />
</td>
        <td>1-7/6-16/11-18/11-20/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-13-14-15-17<br />
</td>
        <td>1-16/11-12/11-18/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-6-8-9-23<br />
</td>
        <td>1-7/5-14/9-7/6-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-6-8-10-23<br />
</td>
        <td>1-7/5-14/9-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-6-9-10-23<br />
</td>
        <td>1-7/5-7/6-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-8-9-10-23<br />
</td>
        <td>1-14/9-7/6-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-9-10-13-23<br />
</td>
        <td>1-7/6-7/4-16/11-14/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-6-8-14-23<br />
</td>
        <td>1-7/5-14/9-12/11-14/11<br />
</td>
        <td>terpsichore<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-6-10-14-23<br />
</td>
        <td>1-7/5-7/4-12/11-14/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-8-10-14-23<br />
</td>
        <td>1-14/9-7/4-12/11-14/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-10-13-14-23<br />
</td>
        <td>1-7/4-16/11-12/11-14/11<br />
</td>
        <td>keenanismic<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-6-9-15-23<br />
</td>
        <td>1-7/5-7/6-18/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-9-13-15-23<br />
</td>
        <td>1-7/6-16/11-18/11-14/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-6-14-15-23<br />
</td>
        <td>1-7/5-12/11-18/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-13-14-15-23<br />
</td>
        <td>1-16/11-12/11-18/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-8-9-17-23<br />
</td>
        <td>1-14/9-7/6-20/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-9-13-17-23<br />
</td>
        <td>1-7/6-16/11-20/11-14/11<br />
</td>
        <td>unimarv<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-8-14-17-23<br />
</td>
        <td>1-14/9-12/11-20/11-14/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-13-14-17-23<br />
</td>
        <td>1-16/11-12/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-9-15-17-23<br />
</td>
        <td>1-7/6-18/11-20/11-14/11<br />
</td>
        <td>terpsichore<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-13-15-17-23<br />
</td>
        <td>1-16/11-18/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-14-15-17-23<br />
</td>
        <td>1-12/11-18/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-2-4-6-8-10<br />
</td>
        <td>1-9/8-5/4-7/5-14/9-7/4<br />
</td>
        <td>erato<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-4-6-8-10-14<br />
</td>
        <td>1-5/4-7/5-14/9-7/4-12/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-6-8-9-10-23<br />
</td>
        <td>1-7/5-14/9-7/6-7/4-14/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-6-8-10-14-23<br />
</td>
        <td>1-7/5-14/9-7/4-12/11-14/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-9-13-15-17-23<br />
</td>
        <td>1-7/6-16/11-18/11-20/11-14/11<br />
</td>
        <td>meanpop<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-13-14-15-17-23<br />
</td>
        <td>1-16/11-12/11-18/11-20/11-14/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
</table>

</body></html>