8L 5s

From Xenharmonic Wiki
Revision as of 14:51, 13 November 2015 by Wikispaces>JosephRuhf (**Imported revision 566382649 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-11-13 14:51:55 UTC.
The original revision id was 566382649.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS is the chromatic scale of Semidim, Tridec, Ammonite and Petrtri temperaments. It represents tempered chains of the 13:10 or 17:13 superthird, thus rendering 10:13:17 as an equidistant triad and tempering out 170:169. Also, the ratio between the generator of this MOS and its inverse is close to phi, or even phi itself.
||   ||   || cents || 2g ||
|| 3/8 ||   || 450 || 900 ||
|| 17/45 ||   || 453.333 || 906.667 ||
||   || 31/82 || 453.512 || 907.024 ||
|| 14/37 ||   || 454.054 || 908.108 ||
||   || 25/66 || 454.5455 || 909.091 ||
||   ||   || 454.978 || 909.956 ||
|| 11/29 ||   || 455.172 || 910.345 ||
||   ||   || 455.608 || 911.825 ||
||   || 30/79 || 455.696 || 911.392 ||
||   ||   || 455.782 || 911.563 ||
||   || 19/50 || 456 || 912 ||
||   || 27/71 || 456.338 || 912.676 ||
||   || 35/92 || 456.522 || 913.043 ||
|| 8/21 ||   || 457.143 || 914.286 ||
||   || 29/76 || 457.684 || 915.368 ||
||   ||   || 457.955 || 915.91 ||
||   || 21/55 || 458.182 || 916.364 ||
||   ||   || 458.359 || 916.718 ||
||   || 34/89 || 458.427 || 916.854 ||
||   ||   || 458.539 || 917.078 ||
|| 13/34 ||   || 458.8235 || 917.647 ||
||   || 31/81 || 459.259 || 918.5185 ||
|| 18/47 ||   || 459.5745 || 919.149 ||
|| 23/60 ||   || 460 || 920 ||
|| 5/13 ||   || 461.5385 || 923.077 ||

Original HTML content:

<html><head><title>8L 5s</title></head><body>This MOS is the chromatic scale of Semidim, Tridec, Ammonite and Petrtri temperaments. It represents tempered chains of the 13:10 or 17:13 superthird, thus rendering 10:13:17 as an equidistant triad and tempering out 170:169. Also, the ratio between the generator of this MOS and its inverse is close to phi, or even phi itself.<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>cents<br />
</td>
        <td>2g<br />
</td>
    </tr>
    <tr>
        <td>3/8<br />
</td>
        <td><br />
</td>
        <td>450<br />
</td>
        <td>900<br />
</td>
    </tr>
    <tr>
        <td>17/45<br />
</td>
        <td><br />
</td>
        <td>453.333<br />
</td>
        <td>906.667<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>31/82<br />
</td>
        <td>453.512<br />
</td>
        <td>907.024<br />
</td>
    </tr>
    <tr>
        <td>14/37<br />
</td>
        <td><br />
</td>
        <td>454.054<br />
</td>
        <td>908.108<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>25/66<br />
</td>
        <td>454.5455<br />
</td>
        <td>909.091<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>454.978<br />
</td>
        <td>909.956<br />
</td>
    </tr>
    <tr>
        <td>11/29<br />
</td>
        <td><br />
</td>
        <td>455.172<br />
</td>
        <td>910.345<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>455.608<br />
</td>
        <td>911.825<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>30/79<br />
</td>
        <td>455.696<br />
</td>
        <td>911.392<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>455.782<br />
</td>
        <td>911.563<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>19/50<br />
</td>
        <td>456<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>27/71<br />
</td>
        <td>456.338<br />
</td>
        <td>912.676<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>35/92<br />
</td>
        <td>456.522<br />
</td>
        <td>913.043<br />
</td>
    </tr>
    <tr>
        <td>8/21<br />
</td>
        <td><br />
</td>
        <td>457.143<br />
</td>
        <td>914.286<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>29/76<br />
</td>
        <td>457.684<br />
</td>
        <td>915.368<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>457.955<br />
</td>
        <td>915.91<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21/55<br />
</td>
        <td>458.182<br />
</td>
        <td>916.364<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>458.359<br />
</td>
        <td>916.718<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>34/89<br />
</td>
        <td>458.427<br />
</td>
        <td>916.854<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>458.539<br />
</td>
        <td>917.078<br />
</td>
    </tr>
    <tr>
        <td>13/34<br />
</td>
        <td><br />
</td>
        <td>458.8235<br />
</td>
        <td>917.647<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>31/81<br />
</td>
        <td>459.259<br />
</td>
        <td>918.5185<br />
</td>
    </tr>
    <tr>
        <td>18/47<br />
</td>
        <td><br />
</td>
        <td>459.5745<br />
</td>
        <td>919.149<br />
</td>
    </tr>
    <tr>
        <td>23/60<br />
</td>
        <td><br />
</td>
        <td>460<br />
</td>
        <td>920<br />
</td>
    </tr>
    <tr>
        <td>5/13<br />
</td>
        <td><br />
</td>
        <td>461.5385<br />
</td>
        <td>923.077<br />
</td>
    </tr>
</table>

</body></html>