50edo

From Xenharmonic Wiki
Revision as of 23:27, 3 June 2012 by Wikispaces>genewardsmith (**Imported revision 342313544 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-06-03 23:27:25 UTC.
The original revision id was 342313544.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.

50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&50 temperament. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.

[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]

==Relations== 
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.

==Intervals== 
|| Degrees of 50-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 24 ||
|| 2 || 48 ||
|| 3 || 72 ||
|| 4 || 96 ||
|| 5 || 120 ||
|| 6 || 144 ||
|| 7 || 168 ||
|| 8 || 192 ||
|| 9 || 216 ||
|| 10 || 240 ||
|| 11 || 264 ||
|| 12 || 288 ||
|| 13 || 312 ||
|| 14 || 336 ||
|| 15 || 360 ||
|| 16 || 384 ||
|| 17 || 408 ||
|| 18 || 432 ||
|| 19 || 456 ||
|| 20 || 480 ||
|| 21 || 504 ||
|| 22 || 528 ||
|| 23 || 552 ||
|| 24 || 576 ||
|| 25 || 600 ||
|| 26 || 624 ||
|| 27 || 648 ||
|| 28 || 672 ||
|| 29 || 696 ||
|| 30 || 720 ||
|| 31 || 744 ||
|| 32 || 768 ||
|| 33 || 792 ||
|| 34 || 816 ||
|| 35 || 840 ||
|| 36 || 864 ||
|| 37 || 888 ||
|| 38 || 912 ||
|| 39 || 936 ||
|| 40 || 960 ||
|| 41 || 984 ||
|| 42 || 1008 ||
|| 43 || 1032 ||
|| 44 || 1056 ||
|| 45 || 1080 ||
|| 46 || 1104 ||
|| 47 || 1128 ||
|| 48 || 1152 ||
|| 49 || 1176 ||

==Commas== 
50 EDO tempers out the following commas. (Note: This assumes the val < 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.
||~ ===In bra format=== ||~ ===In cents=== ||~ ===Ratio=== ||~ ===Name 1=== ||~ ===Name2=== ||
|| | -4 4 -1 > ||> 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | -8 8 -2 > ||> 43.01 ||= 6561/6400 || Mathieu superdiesis ||   ||
|| | 23 6 -14 > ||> 3.34 ||= 1212717/1210381 || Vishnu comma ||   ||
|| | 1 2 -3 1 > ||> 13.79 ||= 126/125 || Small septimal comma ||   ||
|| | -5 2 2 -1 > ||> 7.71 ||= 225/224 || Septimal kleisma ||   ||
|| | 6 0 -5 2 > ||> 6.08 ||= 3136/3125 || Middle second comma ||   ||
|| | -6 -8 2 5 > ||> 1.12 ||= 420175/419904 ||   ||   ||
|| |-11 2 7 -3 > ||> 1.63 ||= 703125/702464 ||   ||   ||
|| | 11 -10 -10 10 > ||> 5.57 ||= 6772805/6751042 ||   ||   ||
|| |-13 10 0 -1 > ||> 50.72 ||= 59049/57344 || Harrison's comma ||   ||
|| | 2 3 1 -2 -1 > ||> 3.21 ||= 540/539 || Swets' comma ||   ||
|| | -3 4 -2 -2 2 > ||> 0.18 ||= 9801/9800 || Kalisma || Gauss' comma ||
|| | 5 -1 3 0 -3 > ||> 3.03 ||= 4000/3993 || Undecimal schisma ||   ||
|| | -7 -1 1 1 1 > ||> 4.50 ||= 385/384 || Undecimal kleisma ||   ||
|| | 2 -1 0 1 -2 1 > ||> 4.76 ||= 364/363 ||   ||   ||
|| | 2 3 0 -1 1 -2 > ||> 7.30 ||= 1188/1183 || Kestrel Comma ||   ||
|| | 3 0 2 0 1 -3 > ||> 2.36 ||= 2200/2197 || Parizek comma ||   ||
|| | -3 1 1 1 0 -1 > ||> 16.57 ||= 105/104 || Small tridecimal comma ||   ||
|| | 3 -2 0 1 -1 -1 0 0 1 > ||> 1.34 ||= 1288/1287 || Triaphonisma ||   ||

[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 23 6 -14 > 3.34 1212717/1210381 Vishnu comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 1 2 -3 1 > 13.79 126/125 small septimal comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -5 2 2 -1 > 7.71 225/224 septimal kleisma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 6 0 -5 2 > 6.08 3136/3125 middle second comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -6 -8 2 5 > 1.12 420175/419904</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-11 2 7 -3 > 1.63 703125/702464</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 11 -10 -10 10 > 5.57 6772805/6751042</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-13 10 0 -1 > 50.72 59049/57344 Harrison's comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 1 -2 -1 > 3.21 540/539 Swets' comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 -1 0 1 -2 1 > 4.76 364/363</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma</span>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span>
 

Original HTML content:

<html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure.<br />
<br />
50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and 105/104, 144/143 and 196/195 in the <a class="wiki_link" href="/13-limit">13-limit</a>, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the <a class="wiki_link" href="/vishnuzma">vishnuzma</a>, 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.<br />
<br />
<a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br />
<a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow">More information about Robert Smith's temperament</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Relations"></a><!-- ws:end:WikiTextHeadingRule:0 -->Relations</h2>
 The 50-edo system is related to <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/31edo">31edo</a> as the next approximation to the &quot;Golden Tone System&quot; (<a class="wiki_link" href="/Das%20Goldene%20Tonsystem">Das Goldene Tonsystem</a>) of Thorvald Kornerup.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 50-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>48<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>72<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>96<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>120<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>144<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>168<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>192<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>216<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>264<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>288<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>312<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>336<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>360<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>384<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>408<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>432<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>456<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>504<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>528<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>552<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>576<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>600<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>624<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>648<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>672<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>696<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>744<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>768<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>792<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>816<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>840<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>864<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>888<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>936<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>984<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>1008<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>1032<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>1056<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>1080<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>1104<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>1128<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>1152<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>1176<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h2>
 50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.<br />


<table class="wiki_table">
    <tr>
        <th><!-- ws:start:WikiTextHeadingRule:6:&lt;h3&gt; --><h3 id="toc3"><a name="x-Commas-In bra format"></a><!-- ws:end:WikiTextHeadingRule:6 -->In bra format</h3>
</th>
        <th><!-- ws:start:WikiTextHeadingRule:8:&lt;h3&gt; --><h3 id="toc4"><a name="x-Commas-In cents"></a><!-- ws:end:WikiTextHeadingRule:8 -->In cents</h3>
</th>
        <th><!-- ws:start:WikiTextHeadingRule:10:&lt;h3&gt; --><h3 id="toc5"><a name="x-Commas-Ratio"></a><!-- ws:end:WikiTextHeadingRule:10 -->Ratio</h3>
</th>
        <th><!-- ws:start:WikiTextHeadingRule:12:&lt;h3&gt; --><h3 id="toc6"><a name="x-Commas-Name 1"></a><!-- ws:end:WikiTextHeadingRule:12 -->Name 1</h3>
</th>
        <th><!-- ws:start:WikiTextHeadingRule:14:&lt;h3&gt; --><h3 id="toc7"><a name="x-Commas-Name2"></a><!-- ws:end:WikiTextHeadingRule:14 -->Name2</h3>
</th>
    </tr>
    <tr>
        <td>| -4 4 -1 &gt;<br />
</td>
        <td style="text-align: right;">21.51<br />
</td>
        <td style="text-align: center;">81/80<br />
</td>
        <td>Syntonic comma<br />
</td>
        <td>Didymus comma<br />
</td>
    </tr>
    <tr>
        <td>| -8 8 -2 &gt;<br />
</td>
        <td style="text-align: right;">43.01<br />
</td>
        <td style="text-align: center;">6561/6400<br />
</td>
        <td>Mathieu superdiesis<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 23 6 -14 &gt;<br />
</td>
        <td style="text-align: right;">3.34<br />
</td>
        <td style="text-align: center;">1212717/1210381<br />
</td>
        <td>Vishnu comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">126/125<br />
</td>
        <td>Small septimal comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| -5 2 2 -1 &gt;<br />
</td>
        <td style="text-align: right;">7.71<br />
</td>
        <td style="text-align: center;">225/224<br />
</td>
        <td>Septimal kleisma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 6 0 -5 2 &gt;<br />
</td>
        <td style="text-align: right;">6.08<br />
</td>
        <td style="text-align: center;">3136/3125<br />
</td>
        <td>Middle second comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| -6 -8 2 5 &gt;<br />
</td>
        <td style="text-align: right;">1.12<br />
</td>
        <td style="text-align: center;">420175/419904<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>|-11 2 7 -3 &gt;<br />
</td>
        <td style="text-align: right;">1.63<br />
</td>
        <td style="text-align: center;">703125/702464<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 11 -10 -10 10 &gt;<br />
</td>
        <td style="text-align: right;">5.57<br />
</td>
        <td style="text-align: center;">6772805/6751042<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>|-13 10 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">50.72<br />
</td>
        <td style="text-align: center;">59049/57344<br />
</td>
        <td>Harrison's comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 2 3 1 -2 -1 &gt;<br />
</td>
        <td style="text-align: right;">3.21<br />
</td>
        <td style="text-align: center;">540/539<br />
</td>
        <td>Swets' comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| -3 4 -2 -2 2 &gt;<br />
</td>
        <td style="text-align: right;">0.18<br />
</td>
        <td style="text-align: center;">9801/9800<br />
</td>
        <td>Kalisma<br />
</td>
        <td>Gauss' comma<br />
</td>
    </tr>
    <tr>
        <td>| 5 -1 3 0 -3 &gt;<br />
</td>
        <td style="text-align: right;">3.03<br />
</td>
        <td style="text-align: center;">4000/3993<br />
</td>
        <td>Undecimal schisma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| -7 -1 1 1 1 &gt;<br />
</td>
        <td style="text-align: right;">4.50<br />
</td>
        <td style="text-align: center;">385/384<br />
</td>
        <td>Undecimal kleisma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 2 -1 0 1 -2 1 &gt;<br />
</td>
        <td style="text-align: right;">4.76<br />
</td>
        <td style="text-align: center;">364/363<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 2 3 0 -1 1 -2 &gt;<br />
</td>
        <td style="text-align: right;">7.30<br />
</td>
        <td style="text-align: center;">1188/1183<br />
</td>
        <td>Kestrel Comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 3 0 2 0 1 -3 &gt;<br />
</td>
        <td style="text-align: right;">2.36<br />
</td>
        <td style="text-align: center;">2200/2197<br />
</td>
        <td>Parizek comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| -3 1 1 1 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">16.57<br />
</td>
        <td style="text-align: center;">105/104<br />
</td>
        <td>Small tridecimal comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>| 3 -2 0 1 -1 -1 0 0 1 &gt;<br />
</td>
        <td style="text-align: right;">1.34<br />
</td>
        <td style="text-align: center;">1288/1287<br />
</td>
        <td>Triaphonisma<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 1 2 -3 1 &gt; 13.79 126/125 small septimal comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -6 -8 2 5 &gt; 1.12 420175/419904</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-11 2 7 -3 &gt; 1.63 703125/702464</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 11 -10 -10 10 &gt; 5.57 6772805/6751042</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-13 10 0 -1 &gt; 50.72 59049/57344 Harrison's comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 1 -2 -1 &gt; 3.21 540/539 Swets' comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 4 -2 -2 2 &gt; 0.18 9801/9800 kalisma, Gauss' comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 5 -1 3 0 -3 &gt; 3.03 4000/3993 undecimal schisma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -7 -1 1 1 1 &gt; 4.50 385/384 undecimal kleisma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 -1 0 1 -2 1 &gt; 4.76 364/363</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 0 -1 1 -2 &gt; 7.30 1188/1183 Kestrel Comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 0 2 0 1 -3 &gt; 2.36 2200/2197 Parizek comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 1 1 1 0 -1 &gt; 16.57 105/104 small tridecimal comma</span><br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma</span></body></html>