32edt

From Xenharmonic Wiki
Revision as of 13:00, 9 May 2012 by Wikispaces>guest (**Imported revision 332560034 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-05-09 13:00:22 UTC.
The original revision id was 332560034.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

//32edt// means the division of 3, the tritave, into 32 equal parts of 59.436 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth [[The Riemann Zeta Function and Tuning#Removing%20primes|zeta peak tritave division]].

=<span style="font-size: 1.4em;">Intervals</span>= 
|| 1 || 59.43609¢ ||
|| 2 || 118.87219 ||
|| 3 || 178.30828 ||
|| 4 || 237.74438 ||
|| 5 || 297.18047 ||
|| 6 || 356.61656 ||
|| 7 || 416.05266 ||
|| 8 || 475.48875 ||
|| 9 || 534.92484 ||
|| 10 || 594.36094 ||
|| 11 || 653.79703 ||
|| 12 || 713.23312 ||
|| 13 || 772.66922 ||
|| 14 || 832.10531 ||
|| 15 || 891.54141 ||
|| 16 || 950.9775 ||
|| 17 || 1010.41359 ||
|| 18 || 1069.84969 ||
|| 19 || 1129.28578 ||
|| 20 || 1188.72188 ||
|| 21 || 1248.15797 ||
|| 22 || 1307.59406 ||
|| 23 || 1367.03016 ||
|| 24 || 1426.46625 ||
|| 25 || 1485.90234 ||
|| 26 || 1545.33844 ||
|| 27 || 1604.77453 ||
|| 28 || 1664.21063 ||
|| 29 || 1723.64672 ||
|| 30 || 1783.08281 ||
|| 31 || 1842.51891 ||
|| 32 || 1901.955 ||

Original HTML content:

<html><head><title>32edt</title></head><body><em>32edt</em> means the division of 3, the tritave, into 32 equal parts of 59.436 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing%20primes">zeta peak tritave division</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="font-size: 1.4em;">Intervals</span></h1>
 

<table class="wiki_table">
    <tr>
        <td>1<br />
</td>
        <td>59.43609¢<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>118.87219<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>178.30828<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>237.74438<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>297.18047<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>356.61656<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>416.05266<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>475.48875<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>534.92484<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>594.36094<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>653.79703<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>713.23312<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>772.66922<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>832.10531<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>891.54141<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>950.9775<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>1010.41359<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>1069.84969<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>1129.28578<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>1188.72188<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>1248.15797<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>1307.59406<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>1367.03016<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1426.46625<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>1485.90234<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>1545.33844<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>1604.77453<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>1664.21063<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>1723.64672<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1783.08281<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1842.51891<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1901.955<br />
</td>
    </tr>
</table>

</body></html>