80edo

From Xenharmonic Wiki
Revision as of 12:34, 12 December 2019 by Jkarimak (talk | contribs) (Intervals of 80edo: Removed pions column)
Jump to navigation Jump to search

The 80 equal temperament, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 cents. 80et is the first equal temperament that represents the 19-limit tonality diamond consistently (it barely manages to do so).

80 et tempers out 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.

80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:

31&80 <<7 6 15 27 -24 -23 -20 ... ||

72&80 <<24 30 40 24 32 24 0 ... ||

34&80 <<2 -4 -50 22 16 2 -40 ... ||

46&80 <<2 -4 30 22 16 2 40 ... ||

29&80 <<3 34 45 33 24 -37 20 ... ||

12&80 <<4 -8 -20 -36 32 4 0 ... ||

22&80 <<6 -10 12 -14 -32 6 -40 ... ||

58&80 <<6 -10 12 -14 -32 6 40 ... ||

41&80 <<7 26 25 -3 -24 -33 20 ... ||

In each case, the numbers joined by an ampersand represent 19-limit patent vals (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.

Intervals of 80edo

degrees cents 7mus ratios*
0 1/1
1 15 19.2 (13.316) 64/63
2 30 38.4 (26.616) 81/80
3 45 57.6 (39.A16) 34/33, 36/35
4 60 76.8 (4C.D16) 26/25, 28/27, 33/32, 35/34
5 75 96 (6016) 22/21, 25/24, 27/26
6 90 115.2 (73.316) 19/18, 20/19, 21/20
7 105 134.4 (86.616) 16/15, 17/16, 18/17
8 120 153.6 (99.A16) 14/13, 15/14
9 135 172.8 (AC.D16) 13/12
10 150 192 (C016) 12/11
11 165 211.2 (D3.316) 11/10
12 180 230.4 (E6.616) 10/9, 21/19
13 195 249.6 (F9.A16) 19/17
14 210 268.8 (10C.D16) 9/8, 17/15
15 225 288 (12016) 8/7
16 240 307.2 (133.316)
17 255 326.4 (146.616) 15/13, 22/19
18 270 345.6 (159.A16) 7/6
19 285 364.8 (16C.D16) 13/11, 20/17
20 300 384 (18016) 19/16, 25/21
21 315 403.2 (193.316) 6/5
22 330 422.4 (1A6.616) 17/14
23 345 441.6 (1B9.A16) 11/9
24 360 460.8 (1CC.D16) 16/13, 21/17
25 375 480 (1E016)
26 390 499.2 (1F3.316) 5/4
27 405 518.4 (206.616) 19/15, 24/19
28 420 537.6 (219.A16) 14/11
29 435 556.8 (22C.D16) 9/7
30 450 576 (24016) 13/10, 22/17
31 465 595.2 (253.316) 17/13
32 480 614.4 (266.616) 21/16, 25/19
33 495 633.6 (279.A16) 4/3
34 510 652.8 (28C.D16)
35 525 672 (2A016) 19/14
36 540 691.2 (2B3.316) 26/19
37 555 710.4 (2C6.616) 11/8
38 570 729.6 (2D9.A16) 18/13
39 585 748.8 (2EC.D16) 7/5
40 600 768 (30016) 17/12, 24/17
  • based on treating 80edo as a 19-limit temperament; other approaches are possible.