← 331edo 332edo 333edo →
Prime factorization 22 × 83
Step size 3.61446 ¢ 
Fifth 194\332 (701.205 ¢) (→ 97\166)
Semitones (A1:m2) 30:26 (108.4 ¢ : 93.98 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

332edo is consistent to the 7-odd-limit. The equal temperament tempers out 2401/2400, 19683/19600, 118098/117649, and 29360128/29296875 in the 7-limit. It provides the optimal patent val for 11-, 13-, and 17-limit sedia.

Prime harmonics

Approximation of prime harmonics in 332edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.75 +0.43 -0.15 +1.69 +1.64 -0.14 -1.13 +0.64 +0.54 +0.75
Relative (%) +0.0 -20.8 +12.0 -4.2 +46.9 +45.4 -3.8 -31.2 +17.7 +15.0 +20.7
Steps
(reduced)
332
(0)
526
(194)
771
(107)
932
(268)
1149
(153)
1229
(233)
1357
(29)
1410
(82)
1502
(174)
1613
(285)
1645
(317)

Subsets and supersets

Since 332 factors into 22 × 83, 332edo has subset edos 2, 4, 83, and 166.

Regular temperament properties

Template:Comma basis begin |- | 2.3.5 | [-13 17 -6, [-53 10 16 | [332 526 771]] | 0.0955 | 0.2778 | 7.69 |- | 2.3.5.7 | 2401/2400, 19683/19600, 29360128/29296875 | [332 526 771 932]] | 0.0851 | 0.2412 | 6.67 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 33\332 | 119.28 | 15/14 | Septidiasemi |- | 1 | 75\332 | 271.08 | 1024/875 | Quasiorwell |- | 1 | 127\332 | 459.04 | 125/96 | Majvam |- | 1 | 143\332 | 516.87 | 27/20 | Gravity |- | 2 | 143\332
(23\332) | 516.87
(83.13) | 27/20
(21/20) | Harry |- | 2 | 45\332 | 162.65 | 1125/1024 | Kwazy Template:Rank-2 end Template:Orf