Gallery of MOS transversals

From Xenharmonic Wiki
Revision as of 12:34, 15 August 2011 by Wikispaces>genewardsmith (**Imported revision 246044157 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-08-15 12:34:01 UTC.
The original revision id was 246044157.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]

=Introduction=
By giving a [[transversal]] for a [[MOSScales|MOS]] for a particular rank two temperament, we can define the MOS as the tempering, in that temperament, of the scale. This is not very interesting in itself; what is more interesting is that since only three primes--2 and two odd primes--can be used for the transversal, we can put the result into [[Scala]], and use its "Lattice and player" command under the Analyze pull-down menu to depict the MOS in terms of a lattice diagram. This can be used to better understand the chord relationships within the MOS. It should be noted that while only chords with two odd primes are depicted, larger chords are associated to them. When 3 and 5 are relatively complex as in miracle, for instance, 7 is likely to be brought along with them, and hence the lattice picture of the 5-limit triads can be used to understand relations between tetrads in miracle and other temperaments of a similar kind.

=Catakleismic=
[[kleismic34trans]]
[[catakleismic34trans]]
[[catakleismic34semitransversal]]

=Miracle=
[[miracle21trans]]
[[miracle31trans]]

=Myna=
[[myna19trans]]
[[myna23trans]]
[[myna27trans]]

=Orwell=
[[orwell22trans]]
[[orwell31trans]]

Original HTML content:

<html><head><title>Gallery of MOS transversals</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#Introduction">Introduction</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Catakleismic">Catakleismic</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Miracle">Miracle</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Myna">Myna</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Orwell">Orwell</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: -->
<!-- ws:end:WikiTextTocRule:16 --><br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Introduction"></a><!-- ws:end:WikiTextHeadingRule:0 -->Introduction</h1>
By giving a <a class="wiki_link" href="/transversal">transversal</a> for a <a class="wiki_link" href="/MOSScales">MOS</a> for a particular rank two temperament, we can define the MOS as the tempering, in that temperament, of the scale. This is not very interesting in itself; what is more interesting is that since only three primes--2 and two odd primes--can be used for the transversal, we can put the result into <a class="wiki_link" href="/Scala">Scala</a>, and use its &quot;Lattice and player&quot; command under the Analyze pull-down menu to depict the MOS in terms of a lattice diagram. This can be used to better understand the chord relationships within the MOS. It should be noted that while only chords with two odd primes are depicted, larger chords are associated to them. When 3 and 5 are relatively complex as in miracle, for instance, 7 is likely to be brought along with them, and hence the lattice picture of the 5-limit triads can be used to understand relations between tetrads in miracle and other temperaments of a similar kind.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Catakleismic"></a><!-- ws:end:WikiTextHeadingRule:2 -->Catakleismic</h1>
<a class="wiki_link" href="/kleismic34trans">kleismic34trans</a><br />
<a class="wiki_link" href="/catakleismic34trans">catakleismic34trans</a><br />
<a class="wiki_link" href="/catakleismic34semitransversal">catakleismic34semitransversal</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Miracle"></a><!-- ws:end:WikiTextHeadingRule:4 -->Miracle</h1>
<a class="wiki_link" href="/miracle21trans">miracle21trans</a><br />
<a class="wiki_link" href="/miracle31trans">miracle31trans</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Myna"></a><!-- ws:end:WikiTextHeadingRule:6 -->Myna</h1>
<a class="wiki_link" href="/myna19trans">myna19trans</a><br />
<a class="wiki_link" href="/myna23trans">myna23trans</a><br />
<a class="wiki_link" href="/myna27trans">myna27trans</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Orwell"></a><!-- ws:end:WikiTextHeadingRule:8 -->Orwell</h1>
<a class="wiki_link" href="/orwell22trans">orwell22trans</a><br />
<a class="wiki_link" href="/orwell31trans">orwell31trans</a></body></html>