Cv scales

From Xenharmonic Wiki
Revision as of 12:54, 2 March 2011 by Wikispaces>genewardsmith (**Imported revision 206542286 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-03-02 12:54:26 UTC.
The original revision id was 206542286.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

From [[http://tech.groups.yahoo.com/group/tuning-math/message/11451]]

It turns out there are a lot of five tetrad scales involving only 11 notes (I've got a list of 132 of them) but none I've found are strictly [[Periodic scale|epimorphic]]. Checking for permutation epimorphic scales may be a good plan.

Of course, there are even more five tetrad scales with 12 notes, but here I give only ones which are epimorphic--all, as it turns out, with the [[Patent val|standard val]]. I cataloged these in pairs, where the odd numbers have three major and two minor tetrads, and the even pairs the reverse. Marvel tempering removes this distinction, and I only list the odd, with the three major tetrads.

I found two scales I've found before, "pris" and "hen12". The latter is an adjusted version of the Hahn reduction of a chain of fifths.

! cv1.scl
First 12/5 <12 19 28 34| epimorphic
12
!
16/15
8/7
7/6
5/4
4/3
7/5
3/2
8/5
5/3
7/4
28/15
2

! cv3.scl
Third 12/5 scale <12 19 28 34| epimorphic = pris
12
!
16/15
28/25
7/6
5/4
4/3
7/5
3/2
8/5
5/3
7/4
28/15
2

! cv5.scl
Fifth 12/5 scale <12 19 28 34| epimorphic = inverse hen12
12
!
15/14
9/8
6/5
5/4
21/16
7/5
3/2
8/5
12/7
7/4
15/8
2

! cv7.scl
Seventh 12/5 scale <12 19 28 34| epimorphic
12
!
21/20
9/8
6/5
9/7
21/16
7/5
3/2
8/5
12/7
9/5
15/8
2

! cv9.scl
Ninth 12/5 scale <12 19 28 34| epimorphic
12
!
15/14
8/7
7/6
5/4
4/3
10/7
32/21
8/5
5/3
25/14
40/21
2

! cv11.scl
Eleventh 12/5 scale <12 19 28 34| epimorphic
12
!
15/14
9/8
6/5
9/7
21/16
7/5
3/2
8/5
12/7
9/5
15/8
2

! cv13.scl
Thirteenth 12/5 scale <12 19 28 34| epimorphic
12
!
16/15
28/25
6/5
5/4
4/3
7/5
3/2
8/5
12/7
7/4
28/15
2

Original HTML content:

<html><head><title>cv scales</title></head><body>From <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11451" rel="nofollow">http://tech.groups.yahoo.com/group/tuning-math/message/11451</a><br />
<br />
It turns out there are a lot of five tetrad scales involving only 11 notes (I've got a list of 132 of them) but none I've found are strictly <a class="wiki_link" href="/Periodic%20scale">epimorphic</a>. Checking for permutation epimorphic scales may be a good plan.<br />
<br />
Of course, there are even more five tetrad scales with 12 notes, but here I give only ones which are epimorphic--all, as it turns out, with the <a class="wiki_link" href="/Patent%20val">standard val</a>. I cataloged these in pairs, where the odd numbers have three major and two minor tetrads, and the even pairs the reverse. Marvel tempering removes this distinction, and I only list the odd, with the three major tetrads.<br />
<br />
I found two scales I've found before, &quot;pris&quot; and &quot;hen12&quot;. The latter is an adjusted version of the Hahn reduction of a chain of fifths.<br />
<br />
! cv1.scl<br />
First 12/5 &lt;12 19 28 34| epimorphic<br />
12<br />
!<br />
16/15<br />
8/7<br />
7/6<br />
5/4<br />
4/3<br />
7/5<br />
3/2<br />
8/5<br />
5/3<br />
7/4<br />
28/15<br />
2<br />
<br />
! cv3.scl<br />
Third 12/5 scale &lt;12 19 28 34| epimorphic = pris<br />
12<br />
!<br />
16/15<br />
28/25<br />
7/6<br />
5/4<br />
4/3<br />
7/5<br />
3/2<br />
8/5<br />
5/3<br />
7/4<br />
28/15<br />
2<br />
<br />
! cv5.scl<br />
Fifth 12/5 scale &lt;12 19 28 34| epimorphic = inverse hen12<br />
12<br />
!<br />
15/14<br />
9/8<br />
6/5<br />
5/4<br />
21/16<br />
7/5<br />
3/2<br />
8/5<br />
12/7<br />
7/4<br />
15/8<br />
2<br />
<br />
! cv7.scl<br />
Seventh 12/5 scale &lt;12 19 28 34| epimorphic<br />
12<br />
!<br />
21/20<br />
9/8<br />
6/5<br />
9/7<br />
21/16<br />
7/5<br />
3/2<br />
8/5<br />
12/7<br />
9/5<br />
15/8<br />
2<br />
<br />
! cv9.scl<br />
Ninth 12/5 scale &lt;12 19 28 34| epimorphic<br />
12<br />
!<br />
15/14<br />
8/7<br />
7/6<br />
5/4<br />
4/3<br />
10/7<br />
32/21<br />
8/5<br />
5/3<br />
25/14<br />
40/21<br />
2<br />
<br />
! cv11.scl<br />
Eleventh 12/5 scale &lt;12 19 28 34| epimorphic<br />
12<br />
!<br />
15/14<br />
9/8<br />
6/5<br />
9/7<br />
21/16<br />
7/5<br />
3/2<br />
8/5<br />
12/7<br />
9/5<br />
15/8<br />
2<br />
<br />
! cv13.scl<br />
Thirteenth 12/5 scale &lt;12 19 28 34| epimorphic<br />
12<br />
!<br />
16/15<br />
28/25<br />
6/5<br />
5/4<br />
4/3<br />
7/5<br />
3/2<br />
8/5<br />
12/7<br />
7/4<br />
28/15<br />
2</body></html>